-
Notifications
You must be signed in to change notification settings - Fork 0
Rules for manipulating derivatives #121
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Changes from all commits
424f19f
5b1aabf
09b5bdc
490ae9b
cb2ade4
d782732
4441482
2253d16
b8a97b2
d15b4fd
cd423c2
1a23111
3b47e6a
153a343
ff7d607
baf7f88
098d801
cc339dc
8f133e9
897b1b6
3cbe127
3720179
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
@@ -1 +1,74 @@ | ||||||||||||
# Manipulating partial derivatives | ||||||||||||
# Manipulating Partial Derivatives | ||||||||||||
|
||||||||||||
We sometimes need to find derivatives we don't obtain easily from one of these potentials. For this, we use some calculus rules. | ||||||||||||
|
||||||||||||
--- | ||||||||||||
|
||||||||||||
#### Inversion | ||||||||||||
|
||||||||||||
If x(y, z) and y(x, z), then: | ||||||||||||
|
||||||||||||
```{math} | ||||||||||||
\left( \frac{\partial x}{\partial y} \right)_z = \frac{1}{\left( \frac{\partial y}{\partial x} \right)_z} | ||||||||||||
Comment on lines
+11
to
+12
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
Wrapping your equations inside |
||||||||||||
``` | ||||||||||||
|
||||||||||||
**Example:** | ||||||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Wrapping examples in the |
||||||||||||
|
||||||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. In this example, it is not entirely clear what the goal of these derivations is. Adding a short explanation at the start to about what the example is trying to find/prove/demonstrate will make it easier for the reader to follow along. The goal according to the original notes is to calculate The issue is that the direct derivation of |
||||||||||||
```{math} | ||||||||||||
Let: | ||||||||||||
x = \frac{y^2}{z} | ||||||||||||
``` | ||||||||||||
|
||||||||||||
We can rearrange this to: | ||||||||||||
```{math} | ||||||||||||
y = \pm \sqrt{xz} | ||||||||||||
``` | ||||||||||||
|
||||||||||||
Now compute: | ||||||||||||
```{math} | ||||||||||||
\left( \frac{\partial x}{\partial y} \right)_z = \frac{2y}{z} | ||||||||||||
``` | ||||||||||||
|
||||||||||||
Then: | ||||||||||||
```{math} | ||||||||||||
\left( \frac{\partial y}{\partial x} \right)_z = \frac{z}{2y} | ||||||||||||
``` | ||||||||||||
|
||||||||||||
And confirm the inversion: | ||||||||||||
```{math} | ||||||||||||
\frac{1}{\left( \frac{\partial y}{\partial x} \right)_z} = \frac{2y}{z} | ||||||||||||
``` | ||||||||||||
|
||||||||||||
#### Chain Rule | ||||||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Should be in a |
||||||||||||
|
||||||||||||
```{math} | ||||||||||||
\left( \frac{\partial x}{\partial y} \right)_z = \left( \frac{\partial x}{\partial w} \right)_z \left( \frac{\partial w}{\partial y} \right)_z | ||||||||||||
``` | ||||||||||||
Comment on lines
+44
to
+46
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This equation could use some preamble to explain what the chain rule is and this new symbol |
||||||||||||
**Example:** | ||||||||||||
|
||||||||||||
```{math} | ||||||||||||
w = yz | ||||||||||||
``` | ||||||||||||
So, | ||||||||||||
```{math} | ||||||||||||
y = \frac{w}{z} | ||||||||||||
``` | ||||||||||||
Then: | ||||||||||||
```{math} | ||||||||||||
x = \frac{(w/z)^2}{z} = \frac{w^2}{z^3} | ||||||||||||
``` | ||||||||||||
Comment on lines
+56
to
+59
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Here, you bring back the definition of x from the earlier example. This is fine, but you should try to be explicit when an example is using a quantity defined in previous examples. You could do this by including the previously used definition of x in a preamble of this example that goes something like "Given {{blank}} and {{blank}}, find {{blank}}." This will ensure the reader doesn't need to go back to the previous example. Since using |
||||||||||||
|
||||||||||||
Now compute: | ||||||||||||
```{math} | ||||||||||||
\left( \frac{\partial x}{\partial w} \right)_z = \frac{2w}{z^3} | ||||||||||||
``` | ||||||||||||
|
||||||||||||
And: | ||||||||||||
```{math} | ||||||||||||
\left( \frac{\partial w}{\partial y} \right)_z = z | ||||||||||||
``` | ||||||||||||
|
||||||||||||
Therefore: | ||||||||||||
```{math} | ||||||||||||
\left( \frac{\partial x}{\partial y} \right)_z = \frac{2w}{z^3} \cdot z = \frac{2w}{z^2} = \frac{2yz}{z^2} = \frac{2y}{z} | ||||||||||||
``` | ||||||||||||
Comment on lines
+72
to
+74
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This should be broken up into multiple lines using |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Putting the definitions of the rules for manipulating derivatives inside of
{topic}
directives will help them stand out. Do this for the chain rule as well.