Skip to content

Useful links covering about machine learning, the theory, implementations, training recipes, courses and more

Notifications You must be signed in to change notification settings

mrinath123/ML_links_and-things

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 

Repository files navigation

ML_links_and_things

1.Architectures

AlexNet: https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks ZFNet: https://arxiv.org/abs/1311.2901 VGG16: https://arxiv.org/abs/1505.06798 ResNet: https://arxiv.org/abs/1704.06904 GoogLeNet: https://arxiv.org/abs/1409.4842 Inception: https://arxiv.org/abs/1512.00567 Xception: https://arxiv.org/abs/1610.02357 MobileNet: https://arxiv.org/abs/1704.04861

Semantic Segmentation

FCN: https://arxiv.org/abs/1411.4038 SegNet: https://arxiv.org/abs/1511.00561 UNet: https://arxiv.org/abs/1505.04597 PSPNet: https://arxiv.org/abs/1612.01105 DeepLab: https://arxiv.org/abs/1606.00915 ICNet: https://arxiv.org/abs/1704.08545 ENet: https://arxiv.org/abs/1606.02147

Generative adversarial networks

GAN: https://arxiv.org/abs/1406.2661 DCGAN: https://arxiv.org/abs/1511.06434 WGAN: https://arxiv.org/abs/1701.07875 Pix2Pix: https://arxiv.org/abs/1611.07004 CycleGAN: https://arxiv.org/abs/1703.10593

Object detection

RCNN: https://arxiv.org/abs/1311.2524 Fast-RCNN: https://arxiv.org/abs/1504.08083 Faster-RCNN: https://arxiv.org/abs/1506.01497 SSD: https://arxiv.org/abs/1512.02325 YOLO: https://arxiv.org/abs/1506.02640 YOLO9000: https://arxiv.org/abs/1612.08242

2.https://www.youtube.com/watch?v=RtqtM1UJfZc //feature_engg_tips

3.https://www.youtube.com/watch?v=ZfxNcO6BqDo //understanding VAE

4.https://www.youtube.com/playlist?list=PL_iWQOsE6TfURIIhCrlt-wj9ByIVpbfGc // deep reinforcement learning course 2020

5.https://github.com/ryancheunggit/Denoise-Transformer-AutoEncoder

6.https://www.youtube.com/playlist?list=PLog3nOPCjKBnjhuHMIXu4ISE4Z4f2jm39 //advanced computer vision course 2020

7.https://www.scottcondron.com/jupyter/visualisation/audio/2020/12/02/dataloaders-samplers-collate.html#:~:text=Internally%2C%20PyTorch%20uses%20a%20Collate%20Function%20to%20combine,we%E2%80%99re%20going%20to%20assume%20automatic%20batching%20is%20enabled // pytorch dalaloaders

8.https://amaarora.github.io/ // very good blogs

9.https://karpathy.github.io/ // very good blogs

10.https://kozodoi.me/blog/ // good set of blogs

11.https://sgugger.github.io/how-do-you-find-a-good-learning-rate.html //finding good Lr

12.https://neptune.ai/blog/graph-neural-network-and-some-of-gnn-applications

13.https://neptune.ai/blog/graph-neural-networks-libraries-tools-learning-resources?utm_source=facebook&utm_medium=post-in-group&utm_campaign=blog-graph-neural-networks-libraries-tools-learning-resources&utm_content=DeepLearnng //tips to learn GNNs

14.https://arxiv.org/pdf/2106.11959.pdf //deep learning on tabular data, you can also check 'Tabnet'

15.https://github.com/fastai/fastbook the whole official fastbook, very good for beginners in deep learning

16.https://fullstackdeeplearning.com/spring2021/lecture-7/ Troubleshooting Deep Neural Networks , Very important

17.https://sebastianraschka.com/blog/2021/dl-course.html another great deep learning course

18.https://efficientdl.com/faster-deep-learning-in-pytorch-a-guide/ Faster Deep Learning Training with PyTorch

19.https://www.analyticsvidhya.com/blog/2021/06/how-to-load-kaggle-datasets-directly-into-google-colab/ loading kaggle datasets to colab

20.https://github.com/jbhuang0604/awesome-tips awesome tips regarding general research (Not only ML)

21.https://www.youtube.com/watch?v=9mS1fIYj1So PyTorch Performance Tuning Guide - Szymon Migacz, NVIDIA

22.https://huyenchip.com/ml-interviews-book/ for your ML iterviews!

23.https://jakevdp.github.io/blog/2014/03/11/frequentism-and-bayesianism-a-practical-intro/ frequentism vs bayesianism

24.https://davidrosenberg.github.io/ml2016/#home MACHINE LEARNING AND COMPUTATIONAL STATISTICS course by legend David Rosenberg

25.https://cds.nyu.edu/deep-learning/ Deep Learning course(my favourite course) by OG Yann LeCun(spring 2021 edition)

26.https://nn.labml.ai/ Annotated PyTorch Paper Implementations

27.https://ikhlestov.github.io/pages/machine-learning/convolutions-types/ Different types of the convolution layers

28.https://amitness.com/ nice set of blogs

29.https://medium.com/@hirotoschwert/digging-into-detectron-2-47b2e794fabd FasterRcnn in detecron2

30.https://medium.com/@chris.p.hughes10 nice set of blogs

31.https://explained.ai/matrix-calculus/ Matrix Calculus

32.https://myrtle.ai/how-to-train-your-resnet-8-bag-of-tricks/ Training tricks for Resnet(can be applied to other models too)

About

Useful links covering about machine learning, the theory, implementations, training recipes, courses and more

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published