Skip to content

msaqib17/Road_Damage_Detection

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ERDD: Efficient Road Damage Detection

An efficient approach for detecting multiple types of road damage using CSPDarknet with Attention4D.

Introduction

This repository presents an efficient road damage detection framework using deep learning. Our approach incorporates Attention4D blocks within the CSPNeXtPAFPN neck to improve feature refinement across multiple scales, enabling better detection of various road damage types. The proposed methodology demonstrates superior performance in detecting large-sized road cracks while maintaining competitive overall detection capabilities.

Installation

### Clone the repository
git clone https://github.com/yourusername/road-damage-detection.git
cd road-damage-detection

# Create and activate conda environment
conda create -n road python=3.8 -y
conda activate road

# Install PyTorch (adjust cuda version as needed)
pip install torch torchvision --index-url https://download.pytorch.org/whl/cu118

# Install MMEngine and MMCV
pip install -U openmim
mim install mmengine
mim install "mmcv>=2.0.0"

# Install MMDetection
pip install -v -e .

Proposed Dataset

Will be released very soon.

Demo

Download weights from this Google Drive link https://drive.google.com/file/d/1XccDJlnS1PfmrHOUWfeRvRML9Hg6xsuj/view?usp=sharing

python demo/image_demo.py demo/86.JPG configs/rtmdet/rtmdet_l_8xb32-300e_coco.py --weights work_dirs/epoch_300.pth

Training

python tools/train.py configs/rtmdet/rtmdet_l_8xb32-300e_coco.py

Testing

python tools/test.py configs/rtmdet/rtmdet_l_8xb32-300e_coco.py work_dirs/rtmdet_l_8xb32-300e_coco/epoch_300.pth --cfg-options test_dataloader.dataset.ann_file=voc07_test.json test_dataloader.dataset.data_prefix.img=JPEGImages test_dataloader.dataset.data_prefix._delete_=True test_evaluator.format_only=True test_evaluator.ann_file=voc07_test.json test_evaluator.outfile_prefix=work_dirs/results

Performance Evaluation on our dataset

Detection Results

Methods Backbone AP AP₅₀ AP₇₅ APₛ APₘ APₗ AR ARₛ ARₘ ARₗ
YOLOV8 YOLOv8CSPDarknet 0.122 0.299 0.082 0.000 0.083 0.127 0.448 0.000 0.234 0.454
YOLOV7 YOLOv7Backbone 0.255 0.498 0.233 0.000 0.127 0.263 0.547 0.000 0.351 0.553
YOLOV6 YOLOv6Backbone 0.110 0.263 0.095 0.000 0.108 0.114 0.560 0.000 0.460 0.572
PPYOLOE PPYOLOECSPResNet 0.112 0.463 0.062 0.000 0.079 0.117 0.322 0.000 0.388 0.325
RTMDET CSPNeXt 0.268 0.527 0.229 0.000 0.123 0.280 0.517 0.000 0.373 0.623
YOLOX YOLOXCSPDarknet 0.200 0.377 0.188 0.000 0.006 0.204 0.288 0.000 0.033 0.386
Ours CSPNeXt 0.446 0.687 0.451 0.000 0.113 0.458 0.675 0.000 0.277 0.690

Detection results (mAP) on road-crack Dataset. The best results are shown in bold and the second best in italics.

Scale-specific Performance Comparison (APₛ/APₘ/APₗ)

For comprehensive results. Please refer to the paper. Use MMYOLO for YOLOV8, YOLOV7, YOLOV6, PPYOLOE

Citation

If you find this work useful in your research, please consider citing:

@article{alkalbani2025rdd4d,
  title={RDD4D: 4D Attention-Guided Road Damage Detection And Classification},
  author={Alkalbani, Asma and Saqib, Muhammad and Alrawahi, Ahmed Salim and Anwar, Abbas and Adak, Chandarnath and Anwar, Saeed},
  journal={arXiv preprint arXiv:2501.02822},
  year={2025}
}

About

Road_Crack_Damage_Detection

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.1%
  • Other 0.9%