Skip to content

muzahid59/rag_demo_notebook

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

3 Commits
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

Retrieval-Augmented Generation (RAG) System with Python & Ollama ๐Ÿš€

Overview

This repository contains a Jupyter Notebook that demonstrates how to build a Retrieval-Augmented Generation (RAG) system using:

  • Python ๐Ÿ
  • Ollama (for running LLM locally)
  • LangChain (for retrieval & orchestration)
  • ChromaDB (for vector storage)
  • SentenceTransformers (for text embeddings)

๐Ÿ”น What You'll Learn

โœ… What is RAG, and how does it work?
โœ… How to extract text from PDFs
โœ… How to create embeddings and store them in ChromaDB
โœ… How to retrieve relevant information
โœ… How to use Ollamaโ€™s LLM to generate responses


๐Ÿ“Œ Installation

1๏ธโƒฃ Clone this repository:

git clone https://github.com/yourusername/rag-system.git
cd rag-system

3๏ธโƒฃ Create a virtual environment & install dependencies:

python3 -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
pip install langchain chromadb sentence-transformers pypdf ollama

4๏ธโƒฃ Pull LLM Model:

ollama pull llama3.2

๐Ÿ›  Usage

Run the Jupyter Notebook (rag_system.ipynb) step-by-step to:

โœ… Load and process PDF documents
โœ… Generate text embeddings using SentenceTransformers
โœ… Store embeddings in ChromaDB for efficient retrieval
โœ… Query and retrieve relevant documents
โœ… Use Ollamaโ€™s LLM to generate responses

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •