-
Notifications
You must be signed in to change notification settings - Fork 86
Model Configuration
ROSA supports both the OpenAI API and Azure OpenAI for its language model. Users can configure and pass either a ChatOpenAI
or AzureChatOpenAI
instance to the ROSA class. Here's an overview of how to set up and use these LLMs:
To use the standard OpenAI API with the ChatOpenAI
model:
-
Ensure you have your OpenAI API key.
-
Create a
ChatOpenAI
instance:from langchain_openai import ChatOpenAI openai_llm = ChatOpenAI( model_name="gpt-4o", # or your preferred model openai_api_key="your_openai_api_key", ) # Pass the LLM to ROSA rosa_instance = ROSA(ros_version=2, llm=openai_llm, ...)
-
Additional Configuration Options:
-
temperature
: Controls randomness (0.0 to 2.0, default 0.7). -
max_tokens
: Limits the response length. -
request_timeout
: Sets timeout for API requests.
Example with additional options:
openai_llm = ChatOpenAI( model_name="gpt-4", openai_api_key="your_openai_api_key", temperature=0.2, max_tokens=512, request_timeout=60, )
-
⚠️ Ensure that you have the necessary environment variables set in your.env
file or system environment. Always handle your API keys and secrets securely.⚠️
To use Azure OpenAI, you'll need to create an AzureChatOpenAI
instance with the appropriate configuration. There are two ways to set this up:
-
Using Azure API Management (APIM) with Tenant ID, Client ID, and Client Secret:
Required Environment Variables:
-
APIM_SUBSCRIPTION_KEY
(if required by your APIM setup) AZURE_TENANT_ID
AZURE_CLIENT_ID
AZURE_CLIENT_SECRET
DEPLOYMENT_ID
API_VERSION
API_ENDPOINT
import os from dotenv import load_dotenv from langchain_openai import AzureChatOpenAI from azure.identity import ClientSecretCredential, get_bearer_token_provider load_dotenv() # Set up Azure authentication credential = ClientSecretCredential( tenant_id=os.getenv("AZURE_TENANT_ID"), client_id=os.getenv("AZURE_CLIENT_ID"), client_secret=os.getenv("AZURE_CLIENT_SECRET"), authority="https://login.microsoftonline.com", ) token_provider = get_bearer_token_provider( credential, "https://cognitiveservices.azure.com/.default" ) # Create AzureChatOpenAI instance azure_llm = AzureChatOpenAI( azure_deployment=os.getenv("DEPLOYMENT_ID"), azure_ad_token_provider=token_provider, openai_api_type="azure_ad", api_version=os.getenv("API_VERSION"), azure_endpoint=os.getenv("API_ENDPOINT"), default_headers={"Ocp-Apim-Subscription-Key": os.getenv("APIM_SUBSCRIPTION_KEY")} if os.getenv("APIM_SUBSCRIPTION_KEY") else {}, ) # Pass the LLM to ROSA rosa = ROSA(ros_version=2, llm=azure_llm, ...)
-
-
Using API Key:
Required Environment Variables:
AZURE_OPENAI_API_KEY
DEPLOYMENT_ID
API_ENDPOINT
import os from dotenv import load_dotenv from langchain_openai import AzureChatOpenAI load_dotenv() # Create AzureChatOpenAI instance azure_llm = AzureChatOpenAI( azure_deployment=os.getenv("DEPLOYMENT_ID"), openai_api_key=os.getenv("AZURE_OPENAI_API_KEY"), azure_endpoint=os.getenv("API_ENDPOINT"), ) # Pass the LLM to ROSA rosa = ROSA(ros_version=2, llm=azure_llm, ...)
Note: If you're using the turtle_agent demo, you can refer to the rosa/src/turtle_agent/scripts/llm.py
file for an example of how to set up the LLM. However, when using ROSA in your own project, you have the flexibility to configure and pass the LLM instance directly to the ROSA class as shown in the examples above.
Remember to handle your API keys and secrets securely, preferably using environment variables or a secure secret management system.
Copyright (c) 2024. Jet Propulsion Laboratory. All rights reserved.