Authors: Salman Fawad, Alan Murphy, Yunning Yuan, Hiranyamaya
(Hiru) Dash, Nathan Skene
Updated: Apr-08-2025
The poweranalysis R package is designed to run robust power analysis for differential gene expression in scRNA-seq studies and provides tools to estimate the optimal number of samples and cells needed to achieve reliable power levels.
Wraps work from this repository into an R package.
To install:
devtools::install_github("neurogenomics/Power_Analysis")
Load:
library(poweranalysis)
UK Dementia Research Institute
Department of Brain Sciences
Faculty of Medicine
Imperial College London
GitHub
utils::sessionInfo()
## R version 4.4.3 (2025-02-28)
## Platform: aarch64-apple-darwin20
## Running under: macOS Sequoia 15.3.2
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## time zone: Europe/London
## tzcode source: internal
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## loaded via a namespace (and not attached):
## [1] gtable_0.3.6 jsonlite_2.0.0 renv_1.1.4
## [4] dplyr_1.1.4 compiler_4.4.3 BiocManager_1.30.25
## [7] tidyselect_1.2.1 rvcheck_0.2.1 scales_1.3.0
## [10] yaml_2.3.10 fastmap_1.2.0 here_1.0.1
## [13] ggplot2_3.5.1 R6_2.6.1 generics_0.1.3
## [16] knitr_1.50 yulab.utils_0.2.0 tibble_3.2.1
## [19] desc_1.4.3 dlstats_0.1.7 munsell_0.5.1
## [22] rprojroot_2.0.4 pillar_1.10.2 RColorBrewer_1.1-3
## [25] rlang_1.1.5 badger_0.2.4 xfun_0.52
## [28] fs_1.6.5 cli_3.6.4 magrittr_2.0.3
## [31] rworkflows_1.0.6 digest_0.6.37 grid_4.4.3
## [34] rstudioapi_0.17.1 lifecycle_1.0.4 vctrs_0.6.5
## [37] evaluate_1.0.3 glue_1.8.0 data.table_1.17.0
## [40] colorspace_2.1-1 rmarkdown_2.29 tools_4.4.3
## [43] pkgconfig_2.0.3 htmltools_0.5.8.1