ATLAS - Advanced Technology for Learning and Social engagement - is a production-grade AI-powered knowledge management and community platform that revolutionizes how individuals and organizations discover, share, and collaborate on knowledge. Part of the MTM-CE (Maximize The Magic - Cascade Edition) ecosystem.
- Overview
- Key Features
- Architecture
- Installation
- Usage
- API Documentation
- Machine Learning
- Configuration
- Development
- Testing
- Deployment
- Performance
- Security
- Contributing
- License
ATLAS is an advanced AI system designed to help individuals and organizations manage, organize, and retrieve knowledge efficiently. It combines intelligent search capabilities, knowledge graph visualization, automated content organization, and community-driven collaboration features to create a comprehensive knowledge ecosystem.
- Intelligent Knowledge Discovery: AI-powered search and recommendation engine that understands context and relationships
- Community-Driven Learning: Connect with experts and learners in your field
- Automated Organization: Smart categorization and tagging powered by machine learning
- Scalable Architecture: Built for enterprise-scale deployments
- Privacy-First Design: Your knowledge remains secure and under your control
- Multi-Format Support: Process PDFs, Word documents, presentations, code files, and more
- Smart Extraction: Extract key concepts, entities, and relationships automatically
- Semantic Indexing: Index content based on meaning, not just keywords
- Version Control: Track changes and maintain document history
- Batch Processing: Handle thousands of documents efficiently
- Natural Language Queries: Search using everyday language
- Semantic Understanding: Find content based on concepts, not just exact matches
- Contextual Results: Results ranked by relevance and context
- Search Analytics: Learn from search patterns to improve results
- Custom Search Filters: Filter by date, author, tags, and custom metadata
- Interactive Graphs: Explore relationships between concepts visually
- Dynamic Updates: Graphs update in real-time as new knowledge is added
- Path Finding: Discover connections between seemingly unrelated topics
- Export Capabilities: Export graphs for presentations and reports
- 3D Visualization: Advanced 3D graph rendering for complex relationships
- ML-Powered Tagging: Automatic tag generation using NLP
- Hierarchical Categories: Multi-level categorization system
- Custom Taxonomies: Define your own classification schemes
- Tag Suggestions: AI suggests relevant tags as you work
- Bulk Operations: Apply tags and categories to multiple items
- Content Discovery: Find relevant content you didn't know existed
- Learning Paths: AI-generated learning sequences
- Expert Matching: Connect with subject matter experts
- Interest Tracking: System learns your preferences over time
- Cross-Domain Suggestions: Discover connections across different fields
- Team Workspaces: Shared knowledge bases for teams
- Access Control: Granular permissions and sharing settings
- Collaborative Editing: Real-time collaboration on documents
- Discussion Threads: Contextual discussions on any content
- Knowledge Validation: Community-driven quality assurance
- Usage Analytics: Track how knowledge is being used
- Knowledge Gaps: Identify missing information in your knowledge base
- Trend Analysis: Discover emerging topics and trends
- Performance Metrics: Monitor search effectiveness and user satisfaction
- Custom Reports: Generate reports for stakeholders
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β Load Balancer β
βββββββββββββββββββββββββββββββ¬ββββββββββββββββββββββββββββββββ
β
βββββββββββββββββββββββββββββββ΄ββββββββββββββββββββββββββββββββ
β API Gateway (FastAPI) β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β Auth β Rate Limiting β Request Routing β Response Cache β
βββββββββββββββ¬βββββββββββββββββββββββββββββββ¬βββββββββββββββββ
β β
βββββββββββββββ΄βββββββββββββ βββββββββββββ΄βββββββββββββββββ
β Service Layer β β ML Pipeline β
ββββββββββββββββββββββββββββ€ ββββββββββββββββββββββββββββββ€
β β’ Document Service β β β’ NLP Engine β
β β’ Search Service β β β’ Recommendation Engine β
β β’ Knowledge Graph β β β’ Classification Models β
β β’ Collaboration Service β β β’ Embedding Generator β
β β’ Analytics Service β β β’ Graph Algorithms β
ββββββββββββββββββββββββββββ ββββββββββββββββββββββββββββββ
β β
βββββββββββββββ΄βββββββββββββββββββββββββββββ΄ββββββββββββββββββ
β Data Layer β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β PostgreSQL β Redis β Elasticsearch β Vector DB β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
ATLAS/
βββ app/
β βββ api/ # API endpoints
β β βββ auth.py # Authentication endpoints
β β βββ documents.py # Document management
β β βββ search.py # Search functionality
β β βββ knowledge_graph.py # Graph operations
β β βββ collaboration.py # Team features
β β βββ analytics.py # Analytics endpoints
β βββ core/ # Core functionality
β β βββ config.py # Configuration
β β βββ security.py # Security utilities
β β βββ dependencies.py # Dependency injection
β βββ models/ # Database models
β β βββ user.py # User model
β β βββ document.py # Document model
β β βββ knowledge.py # Knowledge entities
β β βββ collaboration.py # Collaboration models
β βββ schemas/ # Pydantic schemas
β β βββ user.py # User schemas
β β βββ document.py # Document schemas
β β βββ search.py # Search schemas
β βββ services/ # Business logic
β βββ document_processor.py
β βββ search_engine.py
β βββ knowledge_builder.py
βββ ml/ # Machine learning modules
β βββ nlp/ # NLP models
β βββ embeddings/ # Embedding generation
β βββ classification/ # Document classification
β βββ recommendations/ # Recommendation algorithms
βββ tests/ # Test suite
β βββ unit/ # Unit tests
β βββ integration/ # Integration tests
β βββ e2e/ # End-to-end tests
βββ migrations/ # Database migrations
βββ scripts/ # Utility scripts
βββ docs/ # Documentation
- Python 3.8+
- PostgreSQL 12+
- Redis 6+
- Elasticsearch 7+ (optional, for advanced search)
- Docker & Docker Compose (for containerized deployment)
- Clone the repository
git clone https://github.com/mtm-ce/atlas.git
cd atlas- Create virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate- Install dependencies
pip install -r requirements.txt
pip install -r requirements-dev.txt # For development- Set up environment variables
cp .env.example .env
# Edit .env with your configuration- Initialize database
# Create database
createdb atlas_db
# Run migrations
alembic upgrade head
# Seed initial data (optional)
python scripts/seed_data.py- Start the application
# Development mode
uvicorn main:app --reload --host 0.0.0.0 --port 8000
# Production mode
gunicorn main:app -w 4 -k uvicorn.workers.UvicornWorker# Build and run with Docker Compose
docker-compose up -d
# View logs
docker-compose logs -f atlas
# Stop services
docker-compose downimport requests
from atlas_client import ATLASClient
# Initialize client
client = ATLASClient(
base_url="http://localhost:8000",
api_key="your-api-key"
)
# Upload and process a document
with open("research_paper.pdf", "rb") as f:
document = client.documents.upload(
file=f,
metadata={
"title": "AI in Healthcare",
"author": "Dr. Smith",
"tags": ["AI", "Healthcare", "Research"]
}
)
# Search for related content
results = client.search.query(
query="machine learning applications in medical diagnosis",
filters={"tags": ["Healthcare"]},
limit=10
)
# Build knowledge graph
graph = client.knowledge_graph.build(
document_ids=[doc.id for doc in results],
depth=2,
min_similarity=0.7
)
# Get recommendations
recommendations = client.recommendations.get(
based_on=document.id,
recommendation_type="similar_content",
limit=5
)from atlas.ml import DocumentProcessor, CustomExtractor
# Create custom extractor
class MedicalTermExtractor(CustomExtractor):
def extract(self, text):
# Custom logic to extract medical terms
return medical_terms
# Configure processing pipeline
processor = DocumentProcessor()
processor.add_extractor(MedicalTermExtractor())
processor.add_classifier("medical_specialty")
# Process document with custom pipeline
processed = processor.process(document_path, pipeline_config)# Find shortest path between concepts
path = client.knowledge_graph.find_path(
start_concept="Deep Learning",
end_concept="Drug Discovery",
max_depth=5
)
# Get concept neighborhood
neighborhood = client.knowledge_graph.get_neighborhood(
concept="Artificial Intelligence",
radius=2,
min_edge_weight=0.5
)
# Discover concept clusters
clusters = client.knowledge_graph.find_clusters(
min_cluster_size=5,
similarity_threshold=0.8
)All API endpoints require authentication via JWT tokens or API keys.
Authorization: Bearer <token>
# or
X-API-Key: <api-key>Upload Document
POST /api/v1/documents
Content-Type: multipart/form-data
{
"file": <file>,
"metadata": {
"title": "Document Title",
"tags": ["tag1", "tag2"]
}
}Search Documents
GET /api/v1/search?q=<query>&filters=<filters>&limit=20&offset=0Get Document
GET /api/v1/documents/{document_id}Build Graph
POST /api/v1/knowledge-graph/build
Content-Type: application/json
{
"document_ids": ["doc1", "doc2"],
"options": {
"depth": 2,
"min_similarity": 0.7
}
}Query Graph
POST /api/v1/knowledge-graph/query
Content-Type: application/json
{
"cypher": "MATCH (n:Concept)-[r]->(m:Concept) WHERE n.name = 'AI' RETURN n, r, m"
}Create Workspace
POST /api/v1/workspaces
Content-Type: application/json
{
"name": "Research Team",
"description": "Collaborative research workspace",
"members": ["[email protected]", "[email protected]"]
}Share Document
POST /api/v1/documents/{document_id}/share
Content-Type: application/json
{
"workspace_id": "workspace123",
"permissions": ["read", "comment"]
}For real-time features:
const ws = new WebSocket('ws://localhost:8000/ws');
// Subscribe to document updates
ws.send(JSON.stringify({
action: 'subscribe',
channel: 'document_updates',
document_id: 'doc123'
}));
// Receive real-time updates
ws.onmessage = (event) => {
const update = JSON.parse(event.data);
console.log('Document updated:', update);
};- Named Entity Recognition: Extract people, places, organizations
- Keyword Extraction: Identify important terms and phrases
- Text Summarization: Generate concise summaries
- Language Detection: Support for 50+ languages
- Sentiment Analysis: Understand document tone and sentiment
- Hierarchical Classification: Multi-level categorization
- Multi-Label Classification: Documents can belong to multiple categories
- Custom Classifiers: Train models on your data
- Active Learning: Improve classification with user feedback
- Dense Retrieval: Vector-based semantic search
- Query Understanding: Intent recognition and expansion
- Re-ranking: ML-based result re-ranking
- Personalization: User-specific result ordering
- Entity Linking: Connect mentions to knowledge base entities
- Relation Extraction: Identify relationships between entities
- Graph Embeddings: Learn vector representations of graph nodes
- Link Prediction: Suggest missing connections
- Content-Based Filtering: Recommend based on document similarity
- Collaborative Filtering: Leverage community interactions
- Hybrid Approaches: Combine multiple recommendation strategies
- Explanation Generation: Explain why items are recommended
from atlas.ml import ModelTrainer, DatasetBuilder
# Build training dataset
dataset = DatasetBuilder()
dataset.add_documents(document_ids)
dataset.add_labels(labels)
# Configure trainer
trainer = ModelTrainer(
model_type="document_classifier",
base_model="bert-base-uncased",
config={
"num_epochs": 10,
"batch_size": 32,
"learning_rate": 2e-5
}
)
# Train model
model = trainer.train(dataset)
# Deploy model
client.models.deploy(
model_id=model.id,
endpoint_name="custom-classifier",
min_replicas=2
)# Application
APP_NAME=ATLAS
APP_ENV=production
APP_PORT=8000
APP_WORKERS=4
# Database
DATABASE_URL=postgresql://user:password@localhost:5432/atlas_db
DATABASE_POOL_SIZE=20
DATABASE_POOL_OVERFLOW=0
# Redis
REDIS_URL=redis://localhost:6379/0
REDIS_MAX_CONNECTIONS=50
# Elasticsearch (optional)
ELASTICSEARCH_URL=http://localhost:9200
ELASTICSEARCH_INDEX_PREFIX=atlas_
# ML Configuration
ML_MODEL_PATH=/models
ML_BATCH_SIZE=32
ML_MAX_SEQUENCE_LENGTH=512
EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2
# Security
JWT_SECRET_KEY=your-secret-key-here
JWT_ALGORITHM=HS256
JWT_EXPIRATION_HOURS=24
API_KEY_HEADER=X-API-Key
# Storage
UPLOAD_PATH=/uploads
MAX_UPLOAD_SIZE=104857600 # 100MB
ALLOWED_EXTENSIONS=pdf,docx,txt,md,py,java,cpp
# Features
ENABLE_ML_FEATURES=true
ENABLE_GRAPH_VISUALIZATION=true
ENABLE_COLLABORATION=true
ENABLE_ANALYTICS=true
# External Services
OPENAI_API_KEY=your-openai-key # For advanced NLP features
AWS_ACCESS_KEY_ID=your-aws-key
AWS_SECRET_ACCESS_KEY=your-aws-secret
S3_BUCKET_NAME=atlas-documentsatlas:
version: 1.0.0
environment: production
server:
host: 0.0.0.0
port: 8000
workers: 4
reload: false
database:
url: ${DATABASE_URL}
echo: false
pool_size: 20
pool_recycle: 3600
redis:
url: ${REDIS_URL}
decode_responses: true
ml:
models:
nlp:
model_name: en_core_web_lg
gpu: false
embeddings:
model_name: sentence-transformers/all-MiniLM-L6-v2
dimension: 384
classification:
model_name: atlas-doc-classifier
threshold: 0.7
search:
engine: elasticsearch # or 'postgres' for simpler setup
min_score: 0.5
max_results: 100
features:
ml_processing: true
real_time_collaboration: true
advanced_analytics: true
graph_visualization: true- Install development dependencies
pip install -r requirements-dev.txt
pre-commit install- Configure IDE
# VS Code settings
cp .vscode/settings.json.example .vscode/settings.json
# PyCharm
# Import project settings from .idea/- Run development services
# Start all services
docker-compose -f docker-compose.dev.yml up -d
# Watch logs
docker-compose -f docker-compose.dev.yml logs -f- Formatting: Black (line length: 88)
- Linting: Flake8, Pylint
- Type Checking: MyPy
- Import Sorting: isort
- Documentation: Google-style docstrings
# Format code
black .
# Run linters
flake8
pylint atlas/
# Type checking
mypy atlas/
# All checks
pre-commit run --all-files- Feature Development
git checkout -b feature/your-feature-name
# Make changes
git commit -m "feat: add new feature"
git push origin feature/your-feature-name- Commit Convention
feat:New featurefix:Bug fixdocs:Documentationstyle:Code style changesrefactor:Code refactoringtest:Test changeschore:Build/aux changes
tests/
βββ unit/ # Unit tests
β βββ test_models.py
β βββ test_services.py
β βββ test_ml/
βββ integration/ # Integration tests
β βββ test_api.py
β βββ test_database.py
β βββ test_ml_pipeline.py
βββ e2e/ # End-to-end tests
β βββ test_workflows.py
βββ fixtures/ # Test data
# Run all tests
pytest
# Run with coverage
pytest --cov=atlas --cov-report=html
# Run specific test file
pytest tests/unit/test_models.py
# Run specific test
pytest tests/unit/test_models.py::test_document_creation
# Run by marker
pytest -m "not slow"
# Run in parallel
pytest -n 4import pytest
from atlas.models import Document
from atlas.services import SearchService
@pytest.fixture
def search_service():
return SearchService()
@pytest.fixture
def sample_documents(db_session):
docs = [
Document(title="AI Basics", content="Introduction to AI..."),
Document(title="ML Advanced", content="Deep learning techniques...")
]
db_session.add_all(docs)
db_session.commit()
return docs
def test_semantic_search(search_service, sample_documents):
results = search_service.search(
query="artificial intelligence fundamentals",
limit=10
)
assert len(results) > 0
assert results[0].title == "AI Basics"
assert results[0].score > 0.7
@pytest.mark.slow
def test_knowledge_graph_building(kg_service, large_dataset):
graph = kg_service.build_graph(
documents=large_dataset,
min_similarity=0.6
)
assert graph.num_nodes() > 100
assert graph.num_edges() > 500# Load testing with Locust
locust -f tests/performance/locustfile.py --host=http://localhost:8000
# Benchmark ML models
python tests/performance/benchmark_ml.py# Dockerfile
FROM python:3.9-slim
WORKDIR /app
# Install system dependencies
RUN apt-get update && apt-get install -y \
build-essential \
postgresql-client \
&& rm -rf /var/lib/apt/lists/*
# Install Python dependencies
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
# Copy application
COPY . .
# Run migrations and start server
CMD ["sh", "-c", "alembic upgrade head && uvicorn main:app --host 0.0.0.0 --port 8000"]# k8s/deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: atlas
spec:
replicas: 3
selector:
matchLabels:
app: atlas
template:
metadata:
labels:
app: atlas
spec:
containers:
- name: atlas
image: atlas:latest
ports:
- containerPort: 8000
env:
- name: DATABASE_URL
valueFrom:
secretKeyRef:
name: atlas-secrets
key: database-url
resources:
requests:
memory: "1Gi"
cpu: "500m"
limits:
memory: "2Gi"
cpu: "1000m"
livenessProbe:
httpGet:
path: /health
port: 8000
initialDelaySeconds: 30
periodSeconds: 10- Environment variables configured
- Database migrations run
- ML models downloaded/deployed
- Redis connection verified
- Storage permissions set
- SSL certificates installed
- Monitoring configured
- Backup strategy implemented
- Rate limiting enabled
- Security headers configured
| Operation | Average Time | Throughput |
|---|---|---|
| Document Upload | 250ms | 4 docs/sec |
| Text Extraction | 500ms | 2 docs/sec |
| Semantic Search | 50ms | 20 queries/sec |
| Graph Building | 2s | 0.5 graphs/sec |
| ML Inference | 100ms | 10 docs/sec |
-
Database Optimization
- Create appropriate indexes
- Use connection pooling
- Enable query caching
- Regular VACUUM operations
-
Caching Strategy
- Cache search results
- Cache ML model outputs
- Use Redis for session storage
- Implement CDN for static assets
-
ML Optimization
- Batch processing for inference
- Model quantization
- GPU acceleration
- Model caching
-
Scaling Strategies
- Horizontal scaling for API servers
- Read replicas for database
- Distributed ML inference
- Queue-based document processing
- Authentication: JWT-based auth with refresh tokens
- Authorization: Role-based access control (RBAC)
- Encryption: TLS 1.3 for transport, AES-256 for storage
- Input Validation: Comprehensive request validation
- Rate Limiting: Configurable per-endpoint limits
- Audit Logging: Complete audit trail of all actions
-
API Security
# Rate limiting @app.get("/api/v1/search") @limiter.limit("100/hour") async def search(query: str = Query(..., max_length=1000)): # Validate and sanitize input clean_query = sanitize_input(query) return await search_service.search(clean_query)
-
Data Protection
- Encrypt sensitive data at rest
- Use secure communication channels
- Implement data retention policies
- Regular security audits
-
Access Control
@require_permissions(["documents:read"]) async def get_document(document_id: str, user: User = Depends(get_current_user)): # Check document access if not await has_document_access(user, document_id): raise HTTPException(403, "Access denied") return await get_document_by_id(document_id)
We welcome contributions! Please see our Contributing Guidelines.
- Fork the repository
- Create your feature branch (
git checkout -b feature/AmazingFeature) - Commit your changes (
git commit -m 'Add some AmazingFeature') - Push to the branch (
git push origin feature/AmazingFeature) - Open a Pull Request
- Issue Creation: Create an issue describing the feature/bug
- Discussion: Discuss the implementation approach
- Implementation: Write code following our guidelines
- Testing: Add tests for new functionality
- Documentation: Update documentation as needed
- Review: Submit PR for review
This project is licensed under the MIT License - see the LICENSE file for details.
- Built with β€οΈ by the MTM-CE team
- Powered by FastAPI, PostgreSQL, and cutting-edge ML
- Special thanks to all contributors and the open-source community
- Documentation: https://docs.atlas.mtm-ce.com
- Issues: GitHub Issues
- Discussions: GitHub Discussions
- Email: [email protected]
- Discord: Join our community
ATLAS - Empowering knowledge discovery through intelligent AI
Part of the MTM-CE Ecosystem