Skip to content

AI Knowledge Management & Retrieval Platform - Advanced Technology for Learning and Social engagement

Notifications You must be signed in to change notification settings

ntoledo319/ATLAS

Repository files navigation

ATLAS - AI Knowledge Management & Retrieval Platform

Version Python FastAPI PostgreSQL Redis ML

ATLAS - Advanced Technology for Learning and Social engagement - is a production-grade AI-powered knowledge management and community platform that revolutionizes how individuals and organizations discover, share, and collaborate on knowledge. Part of the MTM-CE (Maximize The Magic - Cascade Edition) ecosystem.

πŸ“‹ Table of Contents

🌟 Overview

ATLAS is an advanced AI system designed to help individuals and organizations manage, organize, and retrieve knowledge efficiently. It combines intelligent search capabilities, knowledge graph visualization, automated content organization, and community-driven collaboration features to create a comprehensive knowledge ecosystem.

Why ATLAS?

  • Intelligent Knowledge Discovery: AI-powered search and recommendation engine that understands context and relationships
  • Community-Driven Learning: Connect with experts and learners in your field
  • Automated Organization: Smart categorization and tagging powered by machine learning
  • Scalable Architecture: Built for enterprise-scale deployments
  • Privacy-First Design: Your knowledge remains secure and under your control

πŸš€ Key Features

🧠 Intelligent Document Processing

  • Multi-Format Support: Process PDFs, Word documents, presentations, code files, and more
  • Smart Extraction: Extract key concepts, entities, and relationships automatically
  • Semantic Indexing: Index content based on meaning, not just keywords
  • Version Control: Track changes and maintain document history
  • Batch Processing: Handle thousands of documents efficiently

πŸ” Advanced Search Capabilities

  • Natural Language Queries: Search using everyday language
  • Semantic Understanding: Find content based on concepts, not just exact matches
  • Contextual Results: Results ranked by relevance and context
  • Search Analytics: Learn from search patterns to improve results
  • Custom Search Filters: Filter by date, author, tags, and custom metadata

πŸ“Š Knowledge Graph Visualization

  • Interactive Graphs: Explore relationships between concepts visually
  • Dynamic Updates: Graphs update in real-time as new knowledge is added
  • Path Finding: Discover connections between seemingly unrelated topics
  • Export Capabilities: Export graphs for presentations and reports
  • 3D Visualization: Advanced 3D graph rendering for complex relationships

🏷️ Automated Tagging & Categorization

  • ML-Powered Tagging: Automatic tag generation using NLP
  • Hierarchical Categories: Multi-level categorization system
  • Custom Taxonomies: Define your own classification schemes
  • Tag Suggestions: AI suggests relevant tags as you work
  • Bulk Operations: Apply tags and categories to multiple items

πŸ’‘ Personalized Recommendations

  • Content Discovery: Find relevant content you didn't know existed
  • Learning Paths: AI-generated learning sequences
  • Expert Matching: Connect with subject matter experts
  • Interest Tracking: System learns your preferences over time
  • Cross-Domain Suggestions: Discover connections across different fields

🀝 Collaborative Features

  • Team Workspaces: Shared knowledge bases for teams
  • Access Control: Granular permissions and sharing settings
  • Collaborative Editing: Real-time collaboration on documents
  • Discussion Threads: Contextual discussions on any content
  • Knowledge Validation: Community-driven quality assurance

πŸ“ˆ Analytics & Insights

  • Usage Analytics: Track how knowledge is being used
  • Knowledge Gaps: Identify missing information in your knowledge base
  • Trend Analysis: Discover emerging topics and trends
  • Performance Metrics: Monitor search effectiveness and user satisfaction
  • Custom Reports: Generate reports for stakeholders

πŸ—οΈ Architecture

System Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                      Load Balancer                          β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                              β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                    API Gateway (FastAPI)                     β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  Auth β”‚  Rate Limiting β”‚  Request Routing β”‚  Response Cache β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
              β”‚                              β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚    Service Layer         β”‚    β”‚     ML Pipeline            β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€    β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ β€’ Document Service       β”‚    β”‚ β€’ NLP Engine               β”‚
β”‚ β€’ Search Service         β”‚    β”‚ β€’ Recommendation Engine    β”‚
β”‚ β€’ Knowledge Graph        β”‚    β”‚ β€’ Classification Models    β”‚
β”‚ β€’ Collaboration Service  β”‚    β”‚ β€’ Embedding Generator      β”‚
β”‚ β€’ Analytics Service      β”‚    β”‚ β€’ Graph Algorithms         β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
              β”‚                              β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                      Data Layer                             β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  PostgreSQL  β”‚  Redis  β”‚  Elasticsearch  β”‚  Vector DB      β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Directory Structure

ATLAS/
β”œβ”€β”€ app/
β”‚   β”œβ”€β”€ api/                    # API endpoints
β”‚   β”‚   β”œβ”€β”€ auth.py            # Authentication endpoints
β”‚   β”‚   β”œβ”€β”€ documents.py       # Document management
β”‚   β”‚   β”œβ”€β”€ search.py          # Search functionality
β”‚   β”‚   β”œβ”€β”€ knowledge_graph.py # Graph operations
β”‚   β”‚   β”œβ”€β”€ collaboration.py   # Team features
β”‚   β”‚   └── analytics.py       # Analytics endpoints
β”‚   β”œβ”€β”€ core/                  # Core functionality
β”‚   β”‚   β”œβ”€β”€ config.py         # Configuration
β”‚   β”‚   β”œβ”€β”€ security.py       # Security utilities
β”‚   β”‚   └── dependencies.py   # Dependency injection
β”‚   β”œβ”€β”€ models/               # Database models
β”‚   β”‚   β”œβ”€β”€ user.py          # User model
β”‚   β”‚   β”œβ”€β”€ document.py      # Document model
β”‚   β”‚   β”œβ”€β”€ knowledge.py     # Knowledge entities
β”‚   β”‚   └── collaboration.py # Collaboration models
β”‚   β”œβ”€β”€ schemas/              # Pydantic schemas
β”‚   β”‚   β”œβ”€β”€ user.py          # User schemas
β”‚   β”‚   β”œβ”€β”€ document.py      # Document schemas
β”‚   β”‚   └── search.py        # Search schemas
β”‚   └── services/             # Business logic
β”‚       β”œβ”€β”€ document_processor.py
β”‚       β”œβ”€β”€ search_engine.py
β”‚       └── knowledge_builder.py
β”œβ”€β”€ ml/                       # Machine learning modules
β”‚   β”œβ”€β”€ nlp/                 # NLP models
β”‚   β”œβ”€β”€ embeddings/          # Embedding generation
β”‚   β”œβ”€β”€ classification/      # Document classification
β”‚   └── recommendations/     # Recommendation algorithms
β”œβ”€β”€ tests/                   # Test suite
β”‚   β”œβ”€β”€ unit/               # Unit tests
β”‚   β”œβ”€β”€ integration/        # Integration tests
β”‚   └── e2e/               # End-to-end tests
β”œβ”€β”€ migrations/             # Database migrations
β”œβ”€β”€ scripts/               # Utility scripts
└── docs/                  # Documentation

πŸ“¦ Installation

Prerequisites

  • Python 3.8+
  • PostgreSQL 12+
  • Redis 6+
  • Elasticsearch 7+ (optional, for advanced search)
  • Docker & Docker Compose (for containerized deployment)

Quick Start

  1. Clone the repository
git clone https://github.com/mtm-ce/atlas.git
cd atlas
  1. Create virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install dependencies
pip install -r requirements.txt
pip install -r requirements-dev.txt  # For development
  1. Set up environment variables
cp .env.example .env
# Edit .env with your configuration
  1. Initialize database
# Create database
createdb atlas_db

# Run migrations
alembic upgrade head

# Seed initial data (optional)
python scripts/seed_data.py
  1. Start the application
# Development mode
uvicorn main:app --reload --host 0.0.0.0 --port 8000

# Production mode
gunicorn main:app -w 4 -k uvicorn.workers.UvicornWorker

Docker Installation

# Build and run with Docker Compose
docker-compose up -d

# View logs
docker-compose logs -f atlas

# Stop services
docker-compose down

πŸ’» Usage

Basic Usage Example

import requests
from atlas_client import ATLASClient

# Initialize client
client = ATLASClient(
    base_url="http://localhost:8000",
    api_key="your-api-key"
)

# Upload and process a document
with open("research_paper.pdf", "rb") as f:
    document = client.documents.upload(
        file=f,
        metadata={
            "title": "AI in Healthcare",
            "author": "Dr. Smith",
            "tags": ["AI", "Healthcare", "Research"]
        }
    )

# Search for related content
results = client.search.query(
    query="machine learning applications in medical diagnosis",
    filters={"tags": ["Healthcare"]},
    limit=10
)

# Build knowledge graph
graph = client.knowledge_graph.build(
    document_ids=[doc.id for doc in results],
    depth=2,
    min_similarity=0.7
)

# Get recommendations
recommendations = client.recommendations.get(
    based_on=document.id,
    recommendation_type="similar_content",
    limit=5
)

Advanced Features

Custom Document Processing Pipeline

from atlas.ml import DocumentProcessor, CustomExtractor

# Create custom extractor
class MedicalTermExtractor(CustomExtractor):
    def extract(self, text):
        # Custom logic to extract medical terms
        return medical_terms

# Configure processing pipeline
processor = DocumentProcessor()
processor.add_extractor(MedicalTermExtractor())
processor.add_classifier("medical_specialty")

# Process document with custom pipeline
processed = processor.process(document_path, pipeline_config)

Knowledge Graph Queries

# Find shortest path between concepts
path = client.knowledge_graph.find_path(
    start_concept="Deep Learning",
    end_concept="Drug Discovery",
    max_depth=5
)

# Get concept neighborhood
neighborhood = client.knowledge_graph.get_neighborhood(
    concept="Artificial Intelligence",
    radius=2,
    min_edge_weight=0.5
)

# Discover concept clusters
clusters = client.knowledge_graph.find_clusters(
    min_cluster_size=5,
    similarity_threshold=0.8
)

πŸ“š API Documentation

Authentication

All API endpoints require authentication via JWT tokens or API keys.

Authorization: Bearer <token>
# or
X-API-Key: <api-key>

Core Endpoints

Documents

Upload Document

POST /api/v1/documents
Content-Type: multipart/form-data

{
  "file": <file>,
  "metadata": {
    "title": "Document Title",
    "tags": ["tag1", "tag2"]
  }
}

Search Documents

GET /api/v1/search?q=<query>&filters=<filters>&limit=20&offset=0

Get Document

GET /api/v1/documents/{document_id}

Knowledge Graph

Build Graph

POST /api/v1/knowledge-graph/build
Content-Type: application/json

{
  "document_ids": ["doc1", "doc2"],
  "options": {
    "depth": 2,
    "min_similarity": 0.7
  }
}

Query Graph

POST /api/v1/knowledge-graph/query
Content-Type: application/json

{
  "cypher": "MATCH (n:Concept)-[r]->(m:Concept) WHERE n.name = 'AI' RETURN n, r, m"
}

Collaboration

Create Workspace

POST /api/v1/workspaces
Content-Type: application/json

{
  "name": "Research Team",
  "description": "Collaborative research workspace",
  "members": ["[email protected]", "[email protected]"]
}

Share Document

POST /api/v1/documents/{document_id}/share
Content-Type: application/json

{
  "workspace_id": "workspace123",
  "permissions": ["read", "comment"]
}

WebSocket Endpoints

For real-time features:

const ws = new WebSocket('ws://localhost:8000/ws');

// Subscribe to document updates
ws.send(JSON.stringify({
  action: 'subscribe',
  channel: 'document_updates',
  document_id: 'doc123'
}));

// Receive real-time updates
ws.onmessage = (event) => {
  const update = JSON.parse(event.data);
  console.log('Document updated:', update);
};

πŸ€– Machine Learning

ML Capabilities

1. Natural Language Processing

  • Named Entity Recognition: Extract people, places, organizations
  • Keyword Extraction: Identify important terms and phrases
  • Text Summarization: Generate concise summaries
  • Language Detection: Support for 50+ languages
  • Sentiment Analysis: Understand document tone and sentiment

2. Document Classification

  • Hierarchical Classification: Multi-level categorization
  • Multi-Label Classification: Documents can belong to multiple categories
  • Custom Classifiers: Train models on your data
  • Active Learning: Improve classification with user feedback

3. Semantic Search

  • Dense Retrieval: Vector-based semantic search
  • Query Understanding: Intent recognition and expansion
  • Re-ranking: ML-based result re-ranking
  • Personalization: User-specific result ordering

4. Knowledge Graph ML

  • Entity Linking: Connect mentions to knowledge base entities
  • Relation Extraction: Identify relationships between entities
  • Graph Embeddings: Learn vector representations of graph nodes
  • Link Prediction: Suggest missing connections

5. Recommendation Systems

  • Content-Based Filtering: Recommend based on document similarity
  • Collaborative Filtering: Leverage community interactions
  • Hybrid Approaches: Combine multiple recommendation strategies
  • Explanation Generation: Explain why items are recommended

Training Custom Models

from atlas.ml import ModelTrainer, DatasetBuilder

# Build training dataset
dataset = DatasetBuilder()
dataset.add_documents(document_ids)
dataset.add_labels(labels)

# Configure trainer
trainer = ModelTrainer(
    model_type="document_classifier",
    base_model="bert-base-uncased",
    config={
        "num_epochs": 10,
        "batch_size": 32,
        "learning_rate": 2e-5
    }
)

# Train model
model = trainer.train(dataset)

# Deploy model
client.models.deploy(
    model_id=model.id,
    endpoint_name="custom-classifier",
    min_replicas=2
)

βš™οΈ Configuration

Environment Variables

# Application
APP_NAME=ATLAS
APP_ENV=production
APP_PORT=8000
APP_WORKERS=4

# Database
DATABASE_URL=postgresql://user:password@localhost:5432/atlas_db
DATABASE_POOL_SIZE=20
DATABASE_POOL_OVERFLOW=0

# Redis
REDIS_URL=redis://localhost:6379/0
REDIS_MAX_CONNECTIONS=50

# Elasticsearch (optional)
ELASTICSEARCH_URL=http://localhost:9200
ELASTICSEARCH_INDEX_PREFIX=atlas_

# ML Configuration
ML_MODEL_PATH=/models
ML_BATCH_SIZE=32
ML_MAX_SEQUENCE_LENGTH=512
EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2

# Security
JWT_SECRET_KEY=your-secret-key-here
JWT_ALGORITHM=HS256
JWT_EXPIRATION_HOURS=24
API_KEY_HEADER=X-API-Key

# Storage
UPLOAD_PATH=/uploads
MAX_UPLOAD_SIZE=104857600  # 100MB
ALLOWED_EXTENSIONS=pdf,docx,txt,md,py,java,cpp

# Features
ENABLE_ML_FEATURES=true
ENABLE_GRAPH_VISUALIZATION=true
ENABLE_COLLABORATION=true
ENABLE_ANALYTICS=true

# External Services
OPENAI_API_KEY=your-openai-key  # For advanced NLP features
AWS_ACCESS_KEY_ID=your-aws-key
AWS_SECRET_ACCESS_KEY=your-aws-secret
S3_BUCKET_NAME=atlas-documents

Configuration File (config.yaml)

atlas:
  version: 1.0.0
  environment: production
  
server:
  host: 0.0.0.0
  port: 8000
  workers: 4
  reload: false
  
database:
  url: ${DATABASE_URL}
  echo: false
  pool_size: 20
  pool_recycle: 3600
  
redis:
  url: ${REDIS_URL}
  decode_responses: true
  
ml:
  models:
    nlp:
      model_name: en_core_web_lg
      gpu: false
    embeddings:
      model_name: sentence-transformers/all-MiniLM-L6-v2
      dimension: 384
    classification:
      model_name: atlas-doc-classifier
      threshold: 0.7
      
search:
  engine: elasticsearch  # or 'postgres' for simpler setup
  min_score: 0.5
  max_results: 100
  
features:
    ml_processing: true
    real_time_collaboration: true
    advanced_analytics: true
    graph_visualization: true

πŸ”§ Development

Setting Up Development Environment

  1. Install development dependencies
pip install -r requirements-dev.txt
pre-commit install
  1. Configure IDE
# VS Code settings
cp .vscode/settings.json.example .vscode/settings.json

# PyCharm
# Import project settings from .idea/
  1. Run development services
# Start all services
docker-compose -f docker-compose.dev.yml up -d

# Watch logs
docker-compose -f docker-compose.dev.yml logs -f

Code Style & Quality

  • Formatting: Black (line length: 88)
  • Linting: Flake8, Pylint
  • Type Checking: MyPy
  • Import Sorting: isort
  • Documentation: Google-style docstrings
# Format code
black .

# Run linters
flake8
pylint atlas/

# Type checking
mypy atlas/

# All checks
pre-commit run --all-files

Git Workflow

  1. Feature Development
git checkout -b feature/your-feature-name
# Make changes
git commit -m "feat: add new feature"
git push origin feature/your-feature-name
  1. Commit Convention
  • feat: New feature
  • fix: Bug fix
  • docs: Documentation
  • style: Code style changes
  • refactor: Code refactoring
  • test: Test changes
  • chore: Build/aux changes

πŸ§ͺ Testing

Test Structure

tests/
β”œβ”€β”€ unit/              # Unit tests
β”‚   β”œβ”€β”€ test_models.py
β”‚   β”œβ”€β”€ test_services.py
β”‚   └── test_ml/
β”œβ”€β”€ integration/       # Integration tests
β”‚   β”œβ”€β”€ test_api.py
β”‚   β”œβ”€β”€ test_database.py
β”‚   └── test_ml_pipeline.py
β”œβ”€β”€ e2e/              # End-to-end tests
β”‚   └── test_workflows.py
└── fixtures/         # Test data

Running Tests

# Run all tests
pytest

# Run with coverage
pytest --cov=atlas --cov-report=html

# Run specific test file
pytest tests/unit/test_models.py

# Run specific test
pytest tests/unit/test_models.py::test_document_creation

# Run by marker
pytest -m "not slow"

# Run in parallel
pytest -n 4

Test Examples

import pytest
from atlas.models import Document
from atlas.services import SearchService

@pytest.fixture
def search_service():
    return SearchService()

@pytest.fixture
def sample_documents(db_session):
    docs = [
        Document(title="AI Basics", content="Introduction to AI..."),
        Document(title="ML Advanced", content="Deep learning techniques...")
    ]
    db_session.add_all(docs)
    db_session.commit()
    return docs

def test_semantic_search(search_service, sample_documents):
    results = search_service.search(
        query="artificial intelligence fundamentals",
        limit=10
    )
    
    assert len(results) > 0
    assert results[0].title == "AI Basics"
    assert results[0].score > 0.7

@pytest.mark.slow
def test_knowledge_graph_building(kg_service, large_dataset):
    graph = kg_service.build_graph(
        documents=large_dataset,
        min_similarity=0.6
    )
    
    assert graph.num_nodes() > 100
    assert graph.num_edges() > 500

Performance Testing

# Load testing with Locust
locust -f tests/performance/locustfile.py --host=http://localhost:8000

# Benchmark ML models
python tests/performance/benchmark_ml.py

πŸš€ Deployment

Docker Deployment

# Dockerfile
FROM python:3.9-slim

WORKDIR /app

# Install system dependencies
RUN apt-get update && apt-get install -y \
    build-essential \
    postgresql-client \
    && rm -rf /var/lib/apt/lists/*

# Install Python dependencies
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt

# Copy application
COPY . .

# Run migrations and start server
CMD ["sh", "-c", "alembic upgrade head && uvicorn main:app --host 0.0.0.0 --port 8000"]

Kubernetes Deployment

# k8s/deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: atlas
spec:
  replicas: 3
  selector:
    matchLabels:
      app: atlas
  template:
    metadata:
      labels:
        app: atlas
    spec:
      containers:
      - name: atlas
        image: atlas:latest
        ports:
        - containerPort: 8000
        env:
        - name: DATABASE_URL
          valueFrom:
            secretKeyRef:
              name: atlas-secrets
              key: database-url
        resources:
          requests:
            memory: "1Gi"
            cpu: "500m"
          limits:
            memory: "2Gi"
            cpu: "1000m"
        livenessProbe:
          httpGet:
            path: /health
            port: 8000
          initialDelaySeconds: 30
          periodSeconds: 10

Production Checklist

  • Environment variables configured
  • Database migrations run
  • ML models downloaded/deployed
  • Redis connection verified
  • Storage permissions set
  • SSL certificates installed
  • Monitoring configured
  • Backup strategy implemented
  • Rate limiting enabled
  • Security headers configured

πŸ“Š Performance

Benchmarks

Operation Average Time Throughput
Document Upload 250ms 4 docs/sec
Text Extraction 500ms 2 docs/sec
Semantic Search 50ms 20 queries/sec
Graph Building 2s 0.5 graphs/sec
ML Inference 100ms 10 docs/sec

Optimization Tips

  1. Database Optimization

    • Create appropriate indexes
    • Use connection pooling
    • Enable query caching
    • Regular VACUUM operations
  2. Caching Strategy

    • Cache search results
    • Cache ML model outputs
    • Use Redis for session storage
    • Implement CDN for static assets
  3. ML Optimization

    • Batch processing for inference
    • Model quantization
    • GPU acceleration
    • Model caching
  4. Scaling Strategies

    • Horizontal scaling for API servers
    • Read replicas for database
    • Distributed ML inference
    • Queue-based document processing

πŸ” Security

Security Features

  • Authentication: JWT-based auth with refresh tokens
  • Authorization: Role-based access control (RBAC)
  • Encryption: TLS 1.3 for transport, AES-256 for storage
  • Input Validation: Comprehensive request validation
  • Rate Limiting: Configurable per-endpoint limits
  • Audit Logging: Complete audit trail of all actions

Security Best Practices

  1. API Security

    # Rate limiting
    @app.get("/api/v1/search")
    @limiter.limit("100/hour")
    async def search(query: str = Query(..., max_length=1000)):
        # Validate and sanitize input
        clean_query = sanitize_input(query)
        return await search_service.search(clean_query)
  2. Data Protection

    • Encrypt sensitive data at rest
    • Use secure communication channels
    • Implement data retention policies
    • Regular security audits
  3. Access Control

    @require_permissions(["documents:read"])
    async def get_document(document_id: str, user: User = Depends(get_current_user)):
        # Check document access
        if not await has_document_access(user, document_id):
            raise HTTPException(403, "Access denied")
        return await get_document_by_id(document_id)

🀝 Contributing

We welcome contributions! Please see our Contributing Guidelines.

How to Contribute

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

Development Process

  1. Issue Creation: Create an issue describing the feature/bug
  2. Discussion: Discuss the implementation approach
  3. Implementation: Write code following our guidelines
  4. Testing: Add tests for new functionality
  5. Documentation: Update documentation as needed
  6. Review: Submit PR for review

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ™ Acknowledgments

  • Built with ❀️ by the MTM-CE team
  • Powered by FastAPI, PostgreSQL, and cutting-edge ML
  • Special thanks to all contributors and the open-source community

πŸ“ž Support


ATLAS - Empowering knowledge discovery through intelligent AI
Part of the MTM-CE Ecosystem

About

AI Knowledge Management & Retrieval Platform - Advanced Technology for Learning and Social engagement

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages