-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathonce_dataset.py
451 lines (385 loc) · 17.6 KB
/
once_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
import copy
import pickle
import numpy as np
from PIL import Image
import torch
import torch.nn.functional as F
from pathlib import Path
from ..dataset import DatasetTemplate
from ...ops.roiaware_pool3d import roiaware_pool3d_utils
from ...utils import box_utils
from .once_toolkits import Octopus
class ONCEDataset(DatasetTemplate):
def __init__(self, dataset_cfg, class_names, training=True, root_path=None, logger=None):
"""
Args:
root_path:
dataset_cfg:
class_names:
training:
logger:
"""
super().__init__(
dataset_cfg=dataset_cfg, class_names=class_names, training=training, root_path=root_path, logger=logger
)
self.split = dataset_cfg.DATA_SPLIT['train'] if training else dataset_cfg.DATA_SPLIT['test']
assert self.split in ['train', 'val', 'test', 'raw_small', 'raw_medium', 'raw_large']
split_dir = self.root_path / 'ImageSets' / (self.split + '.txt')
self.sample_seq_list = [x.strip() for x in open(split_dir).readlines()] if split_dir.exists() else None
self.cam_names = ['cam01', 'cam03', 'cam05', 'cam06', 'cam07', 'cam08', 'cam09']
self.cam_tags = ['top', 'top2', 'left_back', 'left_front', 'right_front', 'right_back', 'back']
self.toolkits = Octopus(self.root_path)
self.once_infos = []
self.include_once_data(self.split)
def include_once_data(self, split):
if self.logger is not None:
self.logger.info('Loading ONCE dataset')
once_infos = []
for info_path in self.dataset_cfg.INFO_PATH[split]:
info_path = self.root_path / info_path
if not info_path.exists():
continue
with open(info_path, 'rb') as f:
infos = pickle.load(f)
once_infos.extend(infos)
def check_annos(info):
return 'annos' in info
if self.split != 'raw':
once_infos = list(filter(check_annos,once_infos))
self.once_infos.extend(once_infos)
if self.logger is not None:
self.logger.info('Total samples for ONCE dataset: %d' % (len(once_infos)))
def set_split(self, split):
super().__init__(
dataset_cfg=self.dataset_cfg, class_names=self.class_names, training=self.training, root_path=self.root_path, logger=self.logger
)
self.split = split
split_dir = self.root_path / 'ImageSets' / (self.split + '.txt')
self.sample_seq_list = [x.strip() for x in open(split_dir).readlines()] if split_dir.exists() else None
def get_lidar(self, sequence_id, frame_id):
return self.toolkits.load_point_cloud(sequence_id, frame_id)
def get_image(self, sequence_id, frame_id, cam_name):
return self.toolkits.load_image(sequence_id, frame_id, cam_name)
def project_lidar_to_image(self, sequence_id, frame_id):
return self.toolkits.project_lidar_to_image(sequence_id, frame_id)
def point_painting(self, points, info):
semseg_dir = './' # add your own seg directory
used_classes = [0,1,2,3,4,5]
num_classes = len(used_classes)
frame_id = str(info['frame_id'])
seq_id = str(info['sequence_id'])
painted = np.zeros((points.shape[0], num_classes)) # classes + bg
for cam_name in self.cam_names:
img_path = Path(semseg_dir) / Path(seq_id) / Path(cam_name) / Path(frame_id+'_label.png')
calib_info = info['calib'][cam_name]
cam_2_velo = calib_info['cam_to_velo']
cam_intri = np.hstack([calib_info['cam_intrinsic'], np.zeros((3, 1), dtype=np.float32)])
point_xyz = points[:, :3]
points_homo = np.hstack(
[point_xyz, np.ones(point_xyz.shape[0], dtype=np.float32).reshape((-1, 1))])
points_lidar = np.dot(points_homo, np.linalg.inv(cam_2_velo).T)
mask = points_lidar[:, 2] > 0
points_lidar = points_lidar[mask]
points_img = np.dot(points_lidar, cam_intri.T)
points_img = points_img / points_img[:, [2]]
uv = points_img[:, [0,1]]
#depth = points_img[:, [2]]
seg_map = np.array(Image.open(img_path)) # (H, W)
H, W = seg_map.shape
seg_feats = np.zeros((H*W, num_classes))
seg_map = seg_map.reshape(-1)
for cls_i in used_classes:
seg_feats[seg_map==cls_i, cls_i] = 1
seg_feats = seg_feats.reshape(H, W, num_classes).transpose(2, 0, 1)
uv[:, 0] = (uv[:, 0] - W / 2) / (W / 2)
uv[:, 1] = (uv[:, 1] - H / 2) / (H / 2)
uv_tensor = torch.from_numpy(uv).unsqueeze(0).unsqueeze(0) # [1,1,N,2]
seg_feats = torch.from_numpy(seg_feats).unsqueeze(0) # [1,C,H,W]
proj_scores = F.grid_sample(seg_feats, uv_tensor, mode='bilinear', padding_mode='zeros') # [1, C, 1, N]
proj_scores = proj_scores.squeeze(0).squeeze(1).transpose(0, 1).contiguous() # [N, C]
painted[mask] = proj_scores.numpy()
return np.concatenate([points, painted], axis=1)
def __len__(self):
if self._merge_all_iters_to_one_epoch:
return len(self.once_infos) * self.total_epochs
return len(self.once_infos)
def __getitem__(self, index):
if self._merge_all_iters_to_one_epoch:
index = index % len(self.once_infos)
info = copy.deepcopy(self.once_infos[index])
frame_id = info['frame_id']
seq_id = info['sequence_id']
points = self.get_lidar(seq_id, frame_id)
if self.dataset_cfg.get('POINT_PAINTING', False):
points = self.point_painting(points, info)
input_dict = {
'points': points,
'frame_id': frame_id,
}
if 'annos' in info:
annos = info['annos']
input_dict.update({
'gt_names': annos['name'],
'gt_boxes': annos['boxes_3d'],
'num_points_in_gt': annos.get('num_points_in_gt', None)
})
data_dict = self.prepare_data(data_dict=input_dict)
data_dict.pop('num_points_in_gt', None)
return data_dict
def get_infos(self, num_workers=4, sample_seq_list=None):
import concurrent.futures as futures
import json
root_path = self.root_path
cam_names = self.cam_names
"""
# dataset json format
{
'meta_info':
'calib': {
'cam01': {
'cam_to_velo': list
'cam_intrinsic': list
'distortion': list
}
...
}
'frames': [
{
'frame_id': timestamp,
'annos': {
'names': list
'boxes_3d': list of list
'boxes_2d': {
'cam01': list of list
...
}
}
'pose': list
},
...
]
}
# open pcdet format
{
'meta_info':
'sequence_id': seq_idx
'frame_id': timestamp
'timestamp': timestamp
'lidar': path
'cam01': path
...
'calib': {
'cam01': {
'cam_to_velo': np.array
'cam_intrinsic': np.array
'distortion': np.array
}
...
}
'pose': np.array
'annos': {
'name': np.array
'boxes_3d': np.array
'boxes_2d': {
'cam01': np.array
....
}
}
}
"""
def process_single_sequence(seq_idx):
print('%s seq_idx: %s' % (self.split, seq_idx))
seq_infos = []
seq_path = Path(root_path) / 'data' / seq_idx
json_path = seq_path / ('%s.json' % seq_idx)
with open(json_path, 'r') as f:
info_this_seq = json.load(f)
meta_info = info_this_seq['meta_info']
calib = info_this_seq['calib']
for f_idx, frame in enumerate(info_this_seq['frames']):
frame_id = frame['frame_id']
if f_idx == 0:
prev_id = None
else:
prev_id = info_this_seq['frames'][f_idx-1]['frame_id']
if f_idx == len(info_this_seq['frames'])-1:
next_id = None
else:
next_id = info_this_seq['frames'][f_idx+1]['frame_id']
pc_path = str(seq_path / 'lidar_roof' / ('%s.bin' % frame_id))
pose = np.array(frame['pose'])
frame_dict = {
'sequence_id': seq_idx,
'frame_id': frame_id,
'timestamp': int(frame_id),
'prev_id': prev_id,
'next_id': next_id,
'meta_info': meta_info,
'lidar': pc_path,
'pose': pose
}
calib_dict = {}
for cam_name in cam_names:
cam_path = str(seq_path / cam_name / ('%s.jpg' % frame_id))
frame_dict.update({cam_name: cam_path})
calib_dict[cam_name] = {}
calib_dict[cam_name]['cam_to_velo'] = np.array(calib[cam_name]['cam_to_velo'])
calib_dict[cam_name]['cam_intrinsic'] = np.array(calib[cam_name]['cam_intrinsic'])
calib_dict[cam_name]['distortion'] = np.array(calib[cam_name]['distortion'])
frame_dict.update({'calib': calib_dict})
if 'annos' in frame:
annos = frame['annos']
boxes_3d = np.array(annos['boxes_3d'])
if boxes_3d.shape[0] == 0:
print(frame_id)
continue
boxes_2d_dict = {}
for cam_name in cam_names:
boxes_2d_dict[cam_name] = np.array(annos['boxes_2d'][cam_name])
annos_dict = {
'name': np.array(annos['names']),
'boxes_3d': boxes_3d,
'boxes_2d': boxes_2d_dict
}
points = self.get_lidar(seq_idx, frame_id)
corners_lidar = box_utils.boxes_to_corners_3d(np.array(annos['boxes_3d']))
num_gt = boxes_3d.shape[0]
num_points_in_gt = -np.ones(num_gt, dtype=np.int32)
for k in range(num_gt):
flag = box_utils.in_hull(points[:, 0:3], corners_lidar[k])
num_points_in_gt[k] = flag.sum()
annos_dict['num_points_in_gt'] = num_points_in_gt
frame_dict.update({'annos': annos_dict})
seq_infos.append(frame_dict)
return seq_infos
sample_seq_list = sample_seq_list if sample_seq_list is not None else self.sample_seq_list
with futures.ThreadPoolExecutor(num_workers) as executor:
infos = executor.map(process_single_sequence, sample_seq_list)
all_infos = []
for info in infos:
all_infos.extend(info)
return all_infos
def create_groundtruth_database(self, info_path=None, used_classes=None, split='train'):
import torch
database_save_path = Path(self.root_path) / ('gt_database' if split == 'train' else ('gt_database_%s' % split))
db_info_save_path = Path(self.root_path) / ('once_dbinfos_%s.pkl' % split)
database_save_path.mkdir(parents=True, exist_ok=True)
all_db_infos = {}
with open(info_path, 'rb') as f:
infos = pickle.load(f)
for k in range(len(infos)):
if 'annos' not in infos[k]:
continue
print('gt_database sample: %d' % (k + 1))
info = infos[k]
frame_id = info['frame_id']
seq_id = info['sequence_id']
points = self.get_lidar(seq_id, frame_id)
annos = info['annos']
names = annos['name']
gt_boxes = annos['boxes_3d']
num_obj = gt_boxes.shape[0]
point_indices = roiaware_pool3d_utils.points_in_boxes_cpu(
torch.from_numpy(points[:, 0:3]), torch.from_numpy(gt_boxes)
).numpy() # (nboxes, npoints)
for i in range(num_obj):
filename = '%s_%s_%d.bin' % (frame_id, names[i], i)
filepath = database_save_path / filename
gt_points = points[point_indices[i] > 0]
gt_points[:, :3] -= gt_boxes[i, :3]
with open(filepath, 'w') as f:
gt_points.tofile(f)
db_path = str(filepath.relative_to(self.root_path)) # gt_database/xxxxx.bin
db_info = {'name': names[i], 'path': db_path, 'gt_idx': i,
'box3d_lidar': gt_boxes[i], 'num_points_in_gt': gt_points.shape[0]}
if names[i] in all_db_infos:
all_db_infos[names[i]].append(db_info)
else:
all_db_infos[names[i]] = [db_info]
for k, v in all_db_infos.items():
print('Database %s: %d' % (k, len(v)))
with open(db_info_save_path, 'wb') as f:
pickle.dump(all_db_infos, f)
@staticmethod
def generate_prediction_dicts(batch_dict, pred_dicts, class_names, output_path=None):
def get_template_prediction(num_samples):
ret_dict = {
'name': np.zeros(num_samples), 'score': np.zeros(num_samples),
'boxes_3d': np.zeros((num_samples, 7))
}
return ret_dict
def generate_single_sample_dict(box_dict):
pred_scores = box_dict['pred_scores'].cpu().numpy()
pred_boxes = box_dict['pred_boxes'].cpu().numpy()
pred_labels = box_dict['pred_labels'].cpu().numpy()
pred_dict = get_template_prediction(pred_scores.shape[0])
if pred_scores.shape[0] == 0:
return pred_dict
pred_dict['name'] = np.array(class_names)[pred_labels - 1]
pred_dict['score'] = pred_scores
pred_dict['boxes_3d'] = pred_boxes
return pred_dict
annos = []
for index, box_dict in enumerate(pred_dicts):
frame_id = batch_dict['frame_id'][index]
single_pred_dict = generate_single_sample_dict(box_dict)
single_pred_dict['frame_id'] = frame_id
annos.append(single_pred_dict)
if output_path is not None:
raise NotImplementedError
return annos
def evaluation(self, det_annos, class_names, **kwargs):
from .once_eval.evaluation import get_evaluation_results
eval_det_annos = copy.deepcopy(det_annos)
eval_gt_annos = [copy.deepcopy(info['annos']) for info in self.once_infos]
ap_result_str, ap_dict = get_evaluation_results(eval_gt_annos, eval_det_annos, class_names)
return ap_result_str, ap_dict
def create_once_infos(dataset_cfg, class_names, data_path, save_path, workers=4):
dataset = ONCEDataset(dataset_cfg=dataset_cfg, class_names=class_names, root_path=data_path, training=False)
image_sets = save_path / Path("ImageSets")
exist_sets = set(list(map(lambda p: p.stem, list(image_sets.glob("*.txt")))))
splits = set(['train', 'val', 'test', 'raw_small', 'raw_medium', 'raw_large'])
ignore = splits - exist_sets
splits = list(splits)
ignore = list(ignore)
print('---------------Start to generate data infos---------------')
for split in splits:
if split in ignore:
continue
filename = 'once_infos_%s.pkl' % split
filename = save_path / Path(filename)
dataset.set_split(split)
once_infos = dataset.get_infos(num_workers=workers)
with open(filename, 'wb') as f:
pickle.dump(once_infos, f)
print('ONCE info %s file is saved to %s' % (split, filename))
train_filename = save_path / 'once_infos_train.pkl'
print('---------------Start create groundtruth database for data augmentation---------------')
dataset.set_split('train')
dataset.create_groundtruth_database(train_filename, split='train')
print('---------------Data preparation Done---------------')
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='arg parser')
parser.add_argument('--cfg_file', type=str, default=None, help='specify the config of dataset')
parser.add_argument('--func', type=str, default='create_once_infos', help='')
parser.add_argument('--runs_on', type=str, default='server', help='')
args = parser.parse_args()
if args.func == 'create_once_infos':
import yaml
from pathlib import Path
from easydict import EasyDict
dataset_cfg = EasyDict(yaml.load(open(args.cfg_file)))
ROOT_DIR = (Path(__file__).resolve().parent / '../../../').resolve()
once_data_path = ROOT_DIR / 'data' / 'once'
once_save_path = ROOT_DIR / 'data' / 'once'
if args.runs_on == 'cloud':
once_data_path = Path('/cache/once/')
once_save_path = Path('/cache/once/')
dataset_cfg.DATA_PATH = dataset_cfg.CLOUD_DATA_PATH
create_once_infos(
dataset_cfg=dataset_cfg,
class_names=['Car', 'Bus', 'Truck', 'Pedestrian', 'Bicycle'],
data_path=once_data_path,
save_path=once_save_path
)