|
| 1 | +_base_ = ['../../../configs/_base_/default_runtime.py'] |
| 2 | + |
| 3 | +custom_imports = dict(imports=['projects.NeRF-Det.nerfdet']) |
| 4 | +prior_generator = dict( |
| 5 | + type='AlignedAnchor3DRangeGenerator', |
| 6 | + ranges=[[-3.2, -3.2, -1.28, 3.2, 3.2, 1.28]], |
| 7 | + rotations=[.0]) |
| 8 | + |
| 9 | +model = dict( |
| 10 | + type='NerfDet', |
| 11 | + data_preprocessor=dict( |
| 12 | + type='NeRFDetDataPreprocessor', |
| 13 | + mean=[123.675, 116.28, 103.53], |
| 14 | + std=[58.395, 57.12, 57.375], |
| 15 | + bgr_to_rgb=True, |
| 16 | + pad_size_divisor=10), |
| 17 | + backbone=dict( |
| 18 | + type='mmdet.ResNet', |
| 19 | + depth=101, |
| 20 | + num_stages=4, |
| 21 | + out_indices=(0, 1, 2, 3), |
| 22 | + frozen_stages=1, |
| 23 | + norm_cfg=dict(type='BN', requires_grad=False), |
| 24 | + norm_eval=True, |
| 25 | + init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101'), |
| 26 | + style='pytorch'), |
| 27 | + neck=dict( |
| 28 | + type='mmdet.FPN', |
| 29 | + in_channels=[256, 512, 1024, 2048], |
| 30 | + out_channels=256, |
| 31 | + num_outs=4), |
| 32 | + neck_3d=dict( |
| 33 | + type='IndoorImVoxelNeck', |
| 34 | + in_channels=256, |
| 35 | + out_channels=128, |
| 36 | + n_blocks=[1, 1, 1]), |
| 37 | + bbox_head=dict( |
| 38 | + type='NerfDetHead', |
| 39 | + bbox_loss=dict(type='AxisAlignedIoULoss', loss_weight=1.0), |
| 40 | + n_classes=18, |
| 41 | + n_levels=3, |
| 42 | + n_channels=128, |
| 43 | + n_reg_outs=6, |
| 44 | + pts_assign_threshold=27, |
| 45 | + pts_center_threshold=18, |
| 46 | + prior_generator=prior_generator), |
| 47 | + prior_generator=prior_generator, |
| 48 | + voxel_size=[.16, .16, .2], |
| 49 | + n_voxels=[40, 40, 16], |
| 50 | + aabb=([-2.7, -2.7, -0.78], [3.7, 3.7, 1.78]), |
| 51 | + near_far_range=[0.2, 8.0], |
| 52 | + N_samples=64, |
| 53 | + N_rand=2048, |
| 54 | + nerf_mode='image', |
| 55 | + depth_supervise=True, |
| 56 | + use_nerf_mask=True, |
| 57 | + nerf_sample_view=20, |
| 58 | + squeeze_scale=4, |
| 59 | + nerf_density=True, |
| 60 | + train_cfg=dict(), |
| 61 | + test_cfg=dict(nms_pre=1000, iou_thr=.25, score_thr=.01)) |
| 62 | + |
| 63 | +dataset_type = 'MultiViewScanNetDataset' |
| 64 | +data_root = 'data/scannet/' |
| 65 | +class_names = [ |
| 66 | + 'cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window', 'bookshelf', |
| 67 | + 'picture', 'counter', 'desk', 'curtain', 'refrigerator', 'showercurtrain', |
| 68 | + 'toilet', 'sink', 'bathtub', 'garbagebin' |
| 69 | +] |
| 70 | +metainfo = dict(CLASSES=class_names) |
| 71 | +file_client_args = dict(backend='disk') |
| 72 | + |
| 73 | +input_modality = dict( |
| 74 | + use_camera=True, |
| 75 | + use_depth=True, |
| 76 | + use_lidar=False, |
| 77 | + use_neuralrecon_depth=False, |
| 78 | + use_ray=True) |
| 79 | +backend_args = None |
| 80 | + |
| 81 | +train_collect_keys = [ |
| 82 | + 'img', 'gt_bboxes_3d', 'gt_labels_3d', 'depth', 'lightpos', 'nerf_sizes', |
| 83 | + 'raydirs', 'gt_images', 'gt_depths', 'denorm_images' |
| 84 | +] |
| 85 | + |
| 86 | +test_collect_keys = [ |
| 87 | + 'img', |
| 88 | + 'depth', |
| 89 | + 'lightpos', |
| 90 | + 'nerf_sizes', |
| 91 | + 'raydirs', |
| 92 | + 'gt_images', |
| 93 | + 'gt_depths', |
| 94 | + 'denorm_images', |
| 95 | +] |
| 96 | + |
| 97 | +train_pipeline = [ |
| 98 | + dict(type='LoadAnnotations3D'), |
| 99 | + dict( |
| 100 | + type='MultiViewPipeline', |
| 101 | + n_images=48, |
| 102 | + transforms=[ |
| 103 | + dict(type='LoadImageFromFile', file_client_args=file_client_args), |
| 104 | + dict(type='Resize', scale=(320, 240), keep_ratio=True), |
| 105 | + ], |
| 106 | + mean=[123.675, 116.28, 103.53], |
| 107 | + std=[58.395, 57.12, 57.375], |
| 108 | + margin=10, |
| 109 | + depth_range=[0.5, 5.5], |
| 110 | + loading='random', |
| 111 | + nerf_target_views=10), |
| 112 | + dict(type='RandomShiftOrigin', std=(.7, .7, .0)), |
| 113 | + dict(type='PackNeRFDetInputs', keys=train_collect_keys) |
| 114 | +] |
| 115 | + |
| 116 | +test_pipeline = [ |
| 117 | + dict(type='LoadAnnotations3D'), |
| 118 | + dict( |
| 119 | + type='MultiViewPipeline', |
| 120 | + n_images=101, |
| 121 | + transforms=[ |
| 122 | + dict(type='LoadImageFromFile', file_client_args=file_client_args), |
| 123 | + dict(type='Resize', scale=(320, 240), keep_ratio=True), |
| 124 | + ], |
| 125 | + mean=[123.675, 116.28, 103.53], |
| 126 | + std=[58.395, 57.12, 57.375], |
| 127 | + margin=10, |
| 128 | + depth_range=[0.5, 5.5], |
| 129 | + loading='random', |
| 130 | + nerf_target_views=1), |
| 131 | + dict(type='PackNeRFDetInputs', keys=test_collect_keys) |
| 132 | +] |
| 133 | + |
| 134 | +train_dataloader = dict( |
| 135 | + batch_size=1, |
| 136 | + num_workers=1, |
| 137 | + persistent_workers=True, |
| 138 | + sampler=dict(type='DefaultSampler', shuffle=True), |
| 139 | + dataset=dict( |
| 140 | + type='RepeatDataset', |
| 141 | + times=6, |
| 142 | + dataset=dict( |
| 143 | + type=dataset_type, |
| 144 | + data_root=data_root, |
| 145 | + ann_file='scannet_infos_train_new.pkl', |
| 146 | + pipeline=train_pipeline, |
| 147 | + modality=input_modality, |
| 148 | + test_mode=False, |
| 149 | + filter_empty_gt=True, |
| 150 | + box_type_3d='Depth', |
| 151 | + metainfo=metainfo))) |
| 152 | +val_dataloader = dict( |
| 153 | + batch_size=1, |
| 154 | + num_workers=5, |
| 155 | + persistent_workers=True, |
| 156 | + drop_last=False, |
| 157 | + sampler=dict(type='DefaultSampler', shuffle=False), |
| 158 | + dataset=dict( |
| 159 | + type=dataset_type, |
| 160 | + data_root=data_root, |
| 161 | + ann_file='scannet_infos_val_new.pkl', |
| 162 | + pipeline=test_pipeline, |
| 163 | + modality=input_modality, |
| 164 | + test_mode=True, |
| 165 | + filter_empty_gt=True, |
| 166 | + box_type_3d='Depth', |
| 167 | + metainfo=metainfo)) |
| 168 | +test_dataloader = val_dataloader |
| 169 | + |
| 170 | +val_evaluator = dict(type='IndoorMetric') |
| 171 | +test_evaluator = val_evaluator |
| 172 | + |
| 173 | +train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=1) |
| 174 | +test_cfg = dict() |
| 175 | +val_cfg = dict() |
| 176 | + |
| 177 | +optim_wrapper = dict( |
| 178 | + type='OptimWrapper', |
| 179 | + optimizer=dict(type='AdamW', lr=0.0002, weight_decay=0.0001), |
| 180 | + paramwise_cfg=dict( |
| 181 | + custom_keys={'backbone': dict(lr_mult=0.1, decay_mult=1.0)}), |
| 182 | + clip_grad=dict(max_norm=35., norm_type=2)) |
| 183 | +param_scheduler = [ |
| 184 | + dict( |
| 185 | + type='MultiStepLR', |
| 186 | + begin=0, |
| 187 | + end=12, |
| 188 | + by_epoch=True, |
| 189 | + milestones=[8, 11], |
| 190 | + gamma=0.1) |
| 191 | +] |
| 192 | + |
| 193 | +# hooks |
| 194 | +default_hooks = dict( |
| 195 | + checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=12)) |
| 196 | + |
| 197 | +# runtime |
| 198 | +find_unused_parameters = True # only 1 of 4 FPN outputs is used |
0 commit comments