Skip to content

[Transformations][GPU] Constant tensor deduplication pass #29052

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 24 commits into from
Apr 23, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
// Copyright (C) 2025 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//

#pragma once

#include "openvino/pass/matcher_pass.hpp"
#include "transformations_visibility.hpp"

namespace ov::pass {

class TRANSFORMATIONS_API ConstantsReduce : public ov::pass::ModelPass {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

do we need to use ModelPass?
it looks like, it can be MatcherPass and we can match wrap_type inside

public:
OPENVINO_MODEL_PASS_RTTI("ConstantsReduce");
bool run_on_model(const std::shared_ptr<ov::Model>& m) override;
};

} // namespace ov::pass
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
// Copyright (C) 2025 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//

#include "transformations/common_optimizations/constants_reduce.hpp"

#include "itt.hpp"
#include "openvino/op/constant.hpp"
#include "openvino/util/log.hpp"

#define LARGE_TENSOR_BYTE_SIZE 64

namespace ov::pass {

using BlobCacheKey = std::shared_ptr<ov::Node>;

struct KeyHash {
std::size_t operator()(const BlobCacheKey& key) const {
std::size_t hash = 0;

auto node = ov::as_type_ptr<op::v0::Constant>(key);

auto type = node->get_output_element_type(0);
auto shape = node->get_shape();
std::size_t size = node->get_byte_size();
const char* data = node->get_data_ptr<char>();

for (auto dim : shape) {
hash ^= std::hash<size_t>{}(dim);
}

for (std::size_t i = 0; i < size; i++) {
hash ^= ((hash << 5) + hash) + data[i];
}

hash ^= type.hash();
hash ^= size;

return hash;
}
};

struct KeyEqual {
bool operator()(const BlobCacheKey& lhs, const BlobCacheKey& rhs) const {
auto lhs_node = ov::as_type_ptr<op::v0::Constant>(lhs);
auto rhs_node = ov::as_type_ptr<op::v0::Constant>(rhs);

auto lhs_type = lhs_node->get_output_element_type(0);
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This part of code looks similar to this function

Consider expert these function to tensor_util.hpp (part of dev API ) and re-use it. The Constant node can provide tensor view

auto rhs_type = rhs_node->get_output_element_type(0);

if (lhs_type != rhs_type)
return false;

auto lhs_shape = lhs_node->get_shape();
auto rhs_shape = rhs_node->get_shape();

if (lhs_shape != rhs_shape)
return false;

std::size_t lhs_size = lhs_node->get_byte_size();
std::size_t rhs_size = rhs_node->get_byte_size();

if (lhs_size != rhs_size)
return false;

// Retrieve buffer pointers
const char* lhs_data = lhs_node->get_data_ptr<char>();
const char* rhs_data = rhs_node->get_data_ptr<char>();

if (lhs_data == rhs_data)
return true;

return std::memcmp(lhs_data, rhs_data, lhs_size) == 0;
}
};

bool ConstantsReduce::run_on_model(const std::shared_ptr<ov::Model>& m) {
RUN_ON_FUNCTION_SCOPE(ConstantsReduce);
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

minor: RUN_ON_FUNCTION_SCOPE -> RUN_ON_MODEL_SCOPE


std::unordered_map<BlobCacheKey, std::shared_ptr<ov::Node>, KeyHash, KeyEqual> blobMemCache;

const auto& ops = m->get_ops();

unsigned int copies = 0;

for (auto& op : ops) {
if (!ov::is_type<ov::op::v0::Constant>(op))
continue;

auto const_node = ov::as_type_ptr<op::v0::Constant>(op);

// Limit size of node reading to avoid reading large tensors
if (const_node->get_byte_size() > LARGE_TENSOR_BYTE_SIZE)
continue;

const auto cache_key = op;
auto bufIter = blobMemCache.find(cache_key);

if (bufIter == blobMemCache.end()) {
blobMemCache[cache_key] = op;
} else {
copies++;
auto users = const_node->get_users();
for (auto user : users) {
for (size_t i = 0; i < user->get_input_size(); i++) {
if (user->input_value(i) == op->output(0)) {
user->input(i).replace_source_output(blobMemCache[cache_key]);
}
}
}
}
}
OPENVINO_DEBUG("Reduced ", copies, " constant node duplications from model");

// Return true if we have made any replacements
return copies > 0;
}

} // namespace ov::pass
Original file line number Diff line number Diff line change
@@ -0,0 +1,115 @@
// Copyright (C) 2025 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//

#define _USE_MATH_DEFINES

#include "transformations/common_optimizations/constants_reduce.hpp"

#include <gtest/gtest.h>
#include <math.h>

#include <memory>

#include "common_test_utils/ov_test_utils.hpp"
#include "openvino/core/model.hpp"
#include "openvino/opsets/opset8.hpp"
#include "openvino/pass/manager.hpp"

using namespace testing;
using namespace ov;

TEST(TransformationTests, ConstantsReduce) {
auto param = std::make_shared<opset8::Parameter>(element::f32, Shape{1, 4});

// Intentionally equal to each other
auto add_constant_1 = opset8::Constant::create(element::f32, Shape{1, 4}, {1.0, 2.0, 3.0, 4.0});
auto add_constant_2 = opset8::Constant::create(element::f32, Shape{1, 4}, {1.0, 2.0, 3.0, 4.0});
auto add_1 = std::make_shared<opset8::Add>(param, add_constant_1);
auto add_2 = std::make_shared<opset8::Add>(add_1, add_constant_2);

auto result = std::make_shared<ov::op::v0::Result>(add_2);
auto f = std::make_shared<Model>(ResultVector{result}, ParameterVector{param});

pass::Manager pass_manager;
pass_manager.register_pass<ov::pass::ConstantsReduce>();
pass_manager.run_passes(f);

// One constant should be reduced since they are equal
ASSERT_EQ(count_ops_of_type<opset8::Constant>(f), 1);
}

TEST(TransformationTests, ConstantsReduceChain) {
auto param = std::make_shared<opset8::Parameter>(element::f32, Shape{1, 4});

// Intentionally equal to each other
auto add_constant_1 = opset8::Constant::create(element::f32, Shape{1, 4}, {1.0, 2.0, 3.0, 4.0});
auto add_constant_2 = opset8::Constant::create(element::f32, Shape{1, 4}, {1.0, 2.0, 3.0, 4.0});
auto add_constant_3 = opset8::Constant::create(element::f32, Shape{1, 4}, {1.0, 2.0, 3.0, 4.0});
auto add_constant_4 = opset8::Constant::create(element::f32, Shape{1, 4}, {1.0, 2.0, 3.0, 4.0});

// Intentionally different
auto add_constant_5 = opset8::Constant::create(element::f32, Shape{1, 4}, {2.0, 2.0, 3.0, 4.0});
auto add_1 = std::make_shared<opset8::Add>(param, add_constant_1);
auto add_2 = std::make_shared<opset8::Add>(add_1, add_constant_2);
auto add_3 = std::make_shared<opset8::Add>(add_2, add_constant_3);
auto add_4 = std::make_shared<opset8::Add>(add_3, add_constant_4);
auto add_5 = std::make_shared<opset8::Add>(add_4, add_constant_5);

auto result = std::make_shared<ov::op::v0::Result>(add_5);
auto f = std::make_shared<Model>(ResultVector{result}, ParameterVector{param});

pass::Manager pass_manager;
pass_manager.register_pass<ov::pass::ConstantsReduce>();
pass_manager.run_passes(f);

// All constants should be reduced to one except the one that is different
ASSERT_EQ(count_ops_of_type<opset8::Constant>(f), 2);
}

TEST(TransformationTests, ConstantsReduceChain2) {
auto param = std::make_shared<opset8::Parameter>(element::f32, Shape{1, 4});

// Intentionally equal to each other
auto add_constant_1 = opset8::Constant::create(element::f32, Shape{1, 4}, {1.0, 2.0, 3.0, 4.0});
auto add_constant_2 = opset8::Constant::create(element::f32, Shape{1, 4}, {1.0, 2.0, 3.0, 4.0});
auto add_constant_3 = opset8::Constant::create(element::f32, Shape{1, 4}, {1.0, 2.0, 3.0, 4.0});
auto add_constant_4 = opset8::Constant::create(element::f32, Shape{1, 4}, {1.0, 2.0, 3.0, 4.0});
auto add_constant_5 = opset8::Constant::create(element::f32, Shape{1, 4}, {1.0, 2.0, 3.0, 4.0});

auto add_1 = std::make_shared<opset8::Add>(param, add_constant_1);
auto add_2 = std::make_shared<opset8::Add>(add_1, add_constant_2);
auto add_3 = std::make_shared<opset8::Add>(add_2, add_constant_3);
auto add_4 = std::make_shared<opset8::Add>(add_3, add_constant_4);
auto add_5 = std::make_shared<opset8::Add>(add_4, add_constant_5);

auto result = std::make_shared<ov::op::v0::Result>(add_5);
auto f = std::make_shared<Model>(ResultVector{result}, ParameterVector{param});

pass::Manager pass_manager;
pass_manager.register_pass<ov::pass::ConstantsReduce>();
pass_manager.run_passes(f);

// All constants should be reduced to one
ASSERT_EQ(count_ops_of_type<opset8::Constant>(f), 1);
}

TEST(TransformationTests, ConstantsReduceNeg) {
auto param = std::make_shared<opset8::Parameter>(element::f32, Shape{1, 4});

// Intentionally unequal to each other
auto add_constant_1 = opset8::Constant::create(element::f32, Shape{1, 4}, {1.0, 2.0, 3.0, 4.0});
auto add_constant_2 = opset8::Constant::create(element::f32, Shape{1, 4}, {1.0, 2.0, 3.0, 4.5});
auto add_1 = std::make_shared<opset8::Add>(param, add_constant_1);
auto add_2 = std::make_shared<opset8::Add>(add_1, add_constant_2);

auto result = std::make_shared<ov::op::v0::Result>(add_2);
auto f = std::make_shared<Model>(ResultVector{result}, ParameterVector{param});

pass::Manager pass_manager;
pass_manager.register_pass<ov::pass::ConstantsReduce>();
pass_manager.run_passes(f);

// No reduction here
ASSERT_EQ(count_ops_of_type<opset8::Constant>(f), 2);
}
Original file line number Diff line number Diff line change
Expand Up @@ -109,6 +109,7 @@
#include "transformations/common_optimizations/transpose_sinking.hpp"
#include "transformations/common_optimizations/weights_dequantize_to_fake_quantize.hpp"
#include "transformations/common_optimizations/wrap_interpolate_into_transposes.hpp"
#include "transformations/common_optimizations/constants_reduce.hpp"
#include "transformations/control_flow/unroll_tensor_iterator.hpp"
#include "transformations/convert_pooling_to_reduce.hpp"
#include "transformations/convert_precision.hpp"
Expand Down Expand Up @@ -1227,6 +1228,8 @@ void TransformationsPipeline::apply(std::shared_ptr<ov::Model> func) {
// Remove Pad in front of MaxPool if both the pads_begin and pads_end are zero.
manager.register_pass<ov::pass::EliminatePad>();

manager.register_pass<ov::pass::ConstantsReduce>();

// This is supposed to be the last pass to ensure that we don't have name collisions until
// GPU plugin stops using friendly names for program creation
manager.register_pass<ov::pass::ResolveNameCollisions>(true);
Expand Down
Loading