Convert tidy data into R packages with documentation websites and intelligent AI descriptions. fairenough prepares your data for publication in one click.
Fairenough transforms this:
my-data/
└── penguins.csv
Into this complete R package:
-
Documentation: AI-generated variable descriptions and data dictionaries
-
Website: Professional pkgdown site ready for deployment
-
Citations: Properly formatted citation files with DOI support
-
Validation: Data structure checks and format consistency
-
Integration: Full R package that others can install and use
Demo: Palmerpenguins published with fairenough!
Prerequisites: R ≥ 4.1.0 and an API key for your preferred LLM provider
install.packages("pak")
pak::pkg_install("openwashdata/fairenough")- Create a new project (or just an empty directory) containing you dataset(s)
- Start an R console at the project (or directory) path
- Run
library(fairenough)
fairenough()That’s it! You’ll get a complete R package with:
-
Documented datasets and variables
-
Professional package website
-
Citation files and README
-
Proper R package structure
# 1. Set up your LLM chat object (see options below)
chat <- ellmer::chat_openai(model = "gpt-4o-mini", api_args = list(temperature = 0.3), api_key = "")
# 2. Place your CSV/Excel files in an empty directory and run
fairenough(chat)-
Running fairenough with an
ellmer::chatobject will generate descriptions for your dataset’s variables
# OpenAI
chat <- ellmer::chat_openai()
# Anthropic Claude
chat <- ellmer::chat_anthropic()
# Local models via Ollama
chat <- ellmer::chat_ollama()-
Detailed documentation: Reference
-
Issues & bugs: GitHub Issues
-
Questions: GitHub Discussions
We welcome contributions! Please see our contributing guidelines and note that this project follows conventional commits.
Development workflow:
# Test new functions
roxygen2::roxygenise(clean = TRUE)
devtools::load_all()Architecture: Feature functions maintain consistency in supported formats and path handling. See R/utils.R for implementation details.
Please cite with:
Text:
Massari N, Zhong M, Götschmann M, Walder C, Schöbitz L (2025). "fairenough: fairenough."
<https://github.com/openwashdata/fairenough>.
BibTeX:
@Misc{massari_etall:2025,
title = {fairenough: fairenough},
author = {Nicolo Massari and Mian Zhong and Margaux Götschmann and Colin Walder and Lars Schöbitz},
year = {2025},
url = {https://github.com/openwashdata/fairenough},
abstract = {Convert tidy data into R packages with documentation websites and intelligent AI descriptions.},
version = {0.1.0},
}