Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add constructor for Dicyclic groups and alias for Quaternion groups #4661

Open
wants to merge 11 commits into
base: master
Choose a base branch
from
210 changes: 128 additions & 82 deletions src/Groups/group_constructors.jl
Original file line number Diff line number Diff line change
Expand Up @@ -205,11 +205,11 @@ end
# Delegating to the GAP constructor via `_gap_filter` does not work here.
function abelian_group(::Type{TG}, v::Vector{T}) where TG <: Union{PcGroup, SubPcGroup} where T <: IntegerUnion
if 0 in v
# if 0 in v || (TG == PcGroup && any(!is_prime, v))
#TODO: Currently GAP's IsPcpGroup groups run into problems
# already in the available Oscar tests,
# see https://github.com/gap-packages/polycyclic/issues/88,
# so we keep the code from the master branch here.
# if 0 in v || (TG == PcGroup && any(!is_prime, v))
#TODO: Currently GAP's IsPcpGroup groups run into problems
# already in the available Oscar tests,
# see https://github.com/gap-packages/polycyclic/issues/88,
# so we keep the code from the master branch here.
# We cannot construct an `IsPcGroup` group if some generator shall have
# order infinity or 1 or a composed number.
return TG(GAP.Globals.AbelianPcpGroup(length(v), GapObj(v; recursive = true)))
Expand Down Expand Up @@ -327,8 +327,8 @@ julia> order(g)
```
"""
function projective_general_linear_group(n::Int, q::Int)
@req is_prime_power_with_data(q)[1] "The field size must be a prime power"
return PermGroup(GAP.Globals.PGL(n, q))
@req is_prime_power_with_data(q)[1] "The field size must be a prime power"
return PermGroup(GAP.Globals.PGL(n, q))
end


Expand All @@ -350,8 +350,8 @@ julia> order(g)
```
"""
function projective_special_linear_group(n::Int, q::Int)
@req is_prime_power_with_data(q)[1] "The field size must be a prime power"
return PermGroup(GAP.Globals.PSL(n, q))
@req is_prime_power_with_data(q)[1] "The field size must be a prime power"
return PermGroup(GAP.Globals.PSL(n, q))
end


Expand All @@ -373,9 +373,9 @@ julia> order(g)
```
"""
function projective_symplectic_group(n::Int, q::Int)
@req is_prime_power_with_data(q)[1] "The field size must be a prime power"
@req iseven(n) "The dimension must be even"
return PermGroup(GAP.Globals.PSp(n, q))
@req is_prime_power_with_data(q)[1] "The field size must be a prime power"
@req iseven(n) "The dimension must be even"
return PermGroup(GAP.Globals.PSp(n, q))
end


Expand All @@ -397,8 +397,8 @@ julia> order(g)
```
"""
function projective_unitary_group(n::Int, q::Int)
@req is_prime_power_with_data(q)[1] "The field size must be a prime power"
return PermGroup(GAP.Globals.PGU(n, q))
@req is_prime_power_with_data(q)[1] "The field size must be a prime power"
return PermGroup(GAP.Globals.PGU(n, q))
end


Expand All @@ -420,8 +420,8 @@ julia> order(g)
```
"""
function projective_special_unitary_group(n::Int, q::Int)
@req is_prime_power_with_data(q)[1] "The field size must be a prime power"
return PermGroup(GAP.Globals.PSU(n, q))
@req is_prime_power_with_data(q)[1] "The field size must be a prime power"
return PermGroup(GAP.Globals.PSU(n, q))
end


Expand All @@ -444,15 +444,15 @@ julia> g = projective_orthogonal_group(3, 3); order(g)
```
"""
function projective_orthogonal_group(e::Int, n::Int, q::Int)
@req is_prime_power_with_data(q)[1] "The field size must be a prime power"
if e == 1 || e == -1
@req iseven(n) "The dimension must be even"
elseif e == 0
@req isodd(n) "The dimension must be odd"
else
throw(ArgumentError("Invalid description of projective orthogonal group"))
end
return PermGroup(GAP.Globals.PGO(e, n, q))
@req is_prime_power_with_data(q)[1] "The field size must be a prime power"
if e == 1 || e == -1
@req iseven(n) "The dimension must be even"
elseif e == 0
@req isodd(n) "The dimension must be odd"
else
throw(ArgumentError("Invalid description of projective orthogonal group"))
end
return PermGroup(GAP.Globals.PGO(e, n, q))
end

projective_orthogonal_group(n::Int, q::Int) = projective_orthogonal_group(0, n, q)
Expand All @@ -477,15 +477,15 @@ julia> g = projective_special_orthogonal_group(3, 3); order(g)
```
"""
function projective_special_orthogonal_group(e::Int, n::Int, q::Int)
@req is_prime_power_with_data(q)[1] "The field size must be a prime power"
if e == 1 || e == -1
@req iseven(n) "The dimension must be even"
elseif e == 0
@req isodd(n) "The dimension must be odd"
else
throw(ArgumentError("Invalid description of projective special orthogonal group"))
end
return PermGroup(GAP.Globals.PSO(e, n, q))
@req is_prime_power_with_data(q)[1] "The field size must be a prime power"
if e == 1 || e == -1
@req iseven(n) "The dimension must be even"
elseif e == 0
@req isodd(n) "The dimension must be odd"
else
throw(ArgumentError("Invalid description of projective special orthogonal group"))
end
return PermGroup(GAP.Globals.PSO(e, n, q))
end

projective_special_orthogonal_group(n::Int, q::Int) = projective_special_orthogonal_group(0, n, q)
Expand All @@ -510,15 +510,15 @@ julia> g = projective_omega_group(3, 3); order(g)
```
"""
function projective_omega_group(e::Int, n::Int, q::Int)
@req is_prime_power_with_data(q)[1] "The field size must be a prime power"
if e == 1 || e == -1
@req iseven(n) "The dimension must be even"
elseif e == 0
@req isodd(n) "The dimension must be odd"
else
throw(ArgumentError("Invalid description of projective orthogonal group"))
end
return PermGroup(GAP.Globals.POmega(e, n, q))
@req is_prime_power_with_data(q)[1] "The field size must be a prime power"
if e == 1 || e == -1
@req iseven(n) "The dimension must be even"
elseif e == 0
@req isodd(n) "The dimension must be odd"
else
throw(ArgumentError("Invalid description of projective orthogonal group"))
end
return PermGroup(GAP.Globals.POmega(e, n, q))
end

projective_omega_group(n::Int, q::Int) = projective_omega_group(0, n, q)
Expand Down Expand Up @@ -611,17 +611,17 @@ julia> gens(free_group([:a, :b], "x" => 1:2, 'y' => (1:2, 1:2)))
```
"""
function free_group(L::Vector{<:Symbol}; eltype::Symbol = :letter)
@req allunique(L) "generator names must be unique"
J = GapObj(L, recursive = true)
if eltype == :syllable
G = FPGroup(GAP.Globals.FreeGroup(J; FreeGroupFamilyType = GapObj("syllable"))::GapObj)
elseif eltype == :letter
G = FPGroup(GAP.Globals.FreeGroup(J)::GapObj)
else
error("eltype must be :letter or :syllable, not ", eltype)
end
GAP.Globals.SetRankOfFreeGroup(GapObj(G), length(J))
return G
@req allunique(L) "generator names must be unique"
J = GapObj(L, recursive = true)
if eltype == :syllable
G = FPGroup(GAP.Globals.FreeGroup(J; FreeGroupFamilyType = GapObj("syllable"))::GapObj)
elseif eltype == :letter
G = FPGroup(GAP.Globals.FreeGroup(J)::GapObj)
else
error("eltype must be :letter or :syllable, not ", eltype)
end
GAP.Globals.SetRankOfFreeGroup(GapObj(G), length(J))
return G
end

# HACK: we want to use `AbstractAlgebra.@varnames_interface` for free groups,
Expand All @@ -636,8 +636,8 @@ end
# `@free_group` by delegating to the `@_free_group` macros (plus some extra
# shenigans).
function _free_group(L::Vector{<:Symbol}; eltype::Symbol = :letter)
G = free_group(L; eltype)
return G, gens(G)
G = free_group(L; eltype)
return G, gens(G)
end

AbstractAlgebra.@varnames_interface _free_group(s)
Expand All @@ -649,7 +649,7 @@ free_group(; kw...) = _free_group(0; kw...)[1]
# HACK to get the default variable name stem `:f` instead of `:x`
# but also to insert validation for `n`.
function free_group(n::Int, s::VarName = :f; kw...)
@req n >= 0 "n must be a non-negative integer"
@req n >= 0 "n must be a non-negative integer"
_free_group(n, s; kw...)[1]
end

Expand Down Expand Up @@ -693,12 +693,12 @@ macro free_group(args...)
# if the arguments are varnames, put them into a vector before delegating
# to @_free_group
esc(quote
Oscar.@_free_group([$(args...)])
Oscar.@_free_group([$(args...)])
end)
else
# by default just delegate to `@_free_group`
esc(quote
Oscar.@_free_group($(args...))
Oscar.@_free_group($(args...))
end)
end
end
Expand All @@ -721,7 +721,7 @@ end
#end

function free_abelian_group(::Type{FPGroup}, n::Int)
return FPGroup(GAPWrap.FreeAbelianGroup(n)::GapObj)
return FPGroup(GAPWrap.FreeAbelianGroup(n)::GapObj)
end


Expand Down Expand Up @@ -821,61 +821,107 @@ false
@gapattribute is_dihedral_group(G::GAPGroup) = GAP.Globals.IsDihedralGroup(GapObj(G))::Bool

"""
dicyclic_group(::Type{T} = PcGroup, n::IntegerUnion)
quaternion_group(::Type{T} = PcGroup, n::IntegerUnion)

Return the (generalized) quaternion group of order `n`,
as an instance of `T`,
where `n` is a power of 2 and `T` is in
{`PcGroup`, `SubPcGroup`, `PermGroup`,`FPGroup`, `SubFPGroup`}.
Return the dicyclic group of order `n`,
as an instance of `T`, where `n` is a multiple of 4
and `T` is a suitable group type such as
`PcGroup`, `SubPcGroup`, `PermGroup`, `FPGroup`, `SubFPGroup`.

!!! note
For historical reasons and backwards compatibility, `quaternion_group` is an alias
of `dicyclic_group`. The two functions are fully identical. We recommend always
using `dicyclic_group`.
Comment on lines +834 to +835
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
of `dicyclic_group`. The two functions are fully identical. We recommend always
using `dicyclic_group`.
of `dicyclic_group`. The two functions are fully identical.


# Examples
```jldoctest
julia> g = quaternion_group(8)
julia> g = dicyclic_group(8)
Pc group of order 8

julia> quaternion_group(PermGroup, 8)
julia> dicyclic_group(PermGroup, 8)
Permutation group of degree 8

julia> g = quaternion_group(FPGroup, 8)
julia> g = dicyclic_group(FPGroup, 8)
Finitely presented group of order 8

julia> relators(g)
3-element Vector{FPGroupElem}:
r^2*s^-2
s^4
r^-1*s*r*s

```
"""
quaternion_group(n::IntegerUnion) = quaternion_group(PcGroup, n)
dicyclic_group(n::IntegerUnion) = dicyclic_group(PcGroup, n)

function quaternion_group(::Type{T}, n::IntegerUnion) where T <: GAPGroup
# FIXME: resolve naming: dicyclic vs (generalized) quaternion: only the
# former should be for any n divisible by 4; the latter only for powers of 2.
# see also debate on the GAP side (https://github.com/gap-system/gap/issues/2725)
function dicyclic_group(::Type{T}, n::IntegerUnion) where {T<:GAPGroup}
@assert iszero(mod(n, 4))
return T(GAP.Globals.QuaternionGroup(_gap_filter(T), n)::GapObj)
return T(GAP.Globals.DicyclicGroup(_gap_filter(T), n)::GapObj)
end

# Delegating to the GAP constructor via `_gap_filter` does not work here.
function quaternion_group(::Type{T}, n::IntegerUnion) where T <: Union{PcGroup, SubPcGroup}
function dicyclic_group(::Type{T}, n::IntegerUnion) where T <: Union{PcGroup, SubPcGroup}
@assert iszero(mod(n, 4))
return T(GAP.Globals.QuaternionGroup(GAP.Globals.IsPcGroup, n)::GapObj)
return T(GAP.Globals.DicyclicGroup(GAP.Globals.IsPcGroup, n)::GapObj)
end

@doc raw"""
is_quaternion_group(G::GAPGroup)
is_dicyclic_group(G::GAPGroup)

Return `true` if `G` is isomorphic to a (generalized) quaternion group
of order $2^{k+1}, k \geq 2$, and `false` otherwise.
Return `true` if `G` is isomorphic to a dicyclic group
of order $4k, k > 1$, and `false` otherwise.

# Examples
```jldoctest
julia> is_quaternion_group(small_group(8, 3))
julia> is_dicyclic_group(small_group(8, 3))
false

julia> is_quaternion_group(small_group(8, 4))
julia> is_dicyclic_group(transitive_group(8, 5))
true
```
"""
@gapattribute is_quaternion_group(G::GAPGroup) = GAP.Globals.IsQuaternionGroup(GapObj(G))::Bool
is_dicyclic_group(G::GAPGroup) = _is_dicyclic_group(G)

@doc raw"""
is_quaternion_group(G::GAPGroup)

Return `true` if `G` is isomorphic to a generalised quaternion group
of order $2^{k+1}, k \geq 2$, and `false` otherwise.
"""
@gapattribute is_quaternion_group(G::GAPGroup) = GAP.Globals.IsGeneralisedQuaternionGroup(GapObj(G))

# TODO: Remove once IsDicyclicGroup from GAP is available.
function _is_dicyclic_group(G::GAPGroup)
N = order(G)
!iszero(mod(N, 4)) && return false

n = N//2
a = n//2
Comment on lines +898 to +899
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This creates rationals but since the numbers are even we are allowed to divide, so we should be able to do this:

Suggested change
n = N//2
a = n//2
n = quo(N,2)
a = quo(n,2)

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think you mean div instead of quo


G1, _ = derived_subgroup(G)
!(is_cyclic(G1) && order(G1) == a) && return false
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This may be a matter of taste, so take with a grain of salt; but I find this easier to understand:

Suggested change
!(is_cyclic(G1) && order(G1) == a) && return false
(is_cyclic(G1) && order(G1) == a) || return false

I read this as "either G1 is cyclic and has order a, or else we return false

Feelfree to ignore this!


local Zn
T = right_transversal(G, G1)
i = 1
while true
H = GAP.Globals.ClosureGroup(GapObj(G1), GapObj(T[i]))
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This line motivated me to write issue #4777 ;-)

Zn, _ = Oscar._as_subgroup(G1, H)
i = i + 1
if (i > 4) || (is_cyclic(Zn) && order(Zn) == n)
Comment on lines +906 to +911
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I guess we could do away with i and just do this? But it would also make the code differ more from the GAP version, so perhaps not worth it anyway

Suggested change
i = 1
while true
H = GAP.Globals.ClosureGroup(GapObj(G1), GapObj(T[i]))
Zn, _ = Oscar._as_subgroup(G1, H)
i = i + 1
if (i > 4) || (is_cyclic(Zn) && order(Zn) == n)
@assert length(T) == 4
for x in T
H = GAP.Globals.ClosureGroup(GapObj(G1), GapObj(x))
Zn, _ = Oscar._as_subgroup(G1, H)
if is_cyclic(Zn) && order(Zn) == n

break
end
end
!(is_cyclic(Zn) && order(Zn) == n) && return false

local t = one(G)
while t in Zn
t = rand(G)
end
!(order(t) == 4 && all(s -> s^t*s == s^0, gens(Zn))) && return false

# Different from GAP code, here we skip finding other generator.
return true
end

const quaternion_group = dicyclic_group
2 changes: 2 additions & 0 deletions src/exports.jl
Original file line number Diff line number Diff line change
Expand Up @@ -510,6 +510,7 @@ export describe
export desimulate_valuation
export det
export diameter
export dicyclic_group
export dihedral_group
export dim
export dim_of_torusfactor
Expand Down Expand Up @@ -845,6 +846,7 @@ export is_coroot_with_index
export is_cyclic, has_is_cyclic, set_is_cyclic
export is_degenerate
export is_dense
export is_dicyclic_group
export is_dihedral_group, has_is_dihedral_group, set_is_dihedral_group
export is_dominant
export is_du_val_singularity
Expand Down
7 changes: 7 additions & 0 deletions test/Groups/constructors.jl
Original file line number Diff line number Diff line change
Expand Up @@ -65,6 +65,10 @@ end
@test isa(dihedral_group(PermGroup, 6), PermGroup)

@test is_quaternion_group(small_group(8, 4))
@test ! is_quaternion_group(small_group(12, 3))
@test is_dicyclic_group(small_group(8, 4))
@test ! is_dicyclic_group(small_group(13, 1))
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

A test where is_dicyclic_group(G) is true but is_quaternion_group(G) is false would be useful, for example

G = small_group(12, 1);
@test is_dicyclic_group(G) && !is_quaternion_group(G)

(This was the motivation for adding IsDicyclicGroup to GAP.)


@test small_group_identification(small_group(8, 4)) == (8, 4)
@test isa(small_group(8, 4), PcGroup)
@test isa(small_group(60, 5), PermGroup)
Expand Down Expand Up @@ -170,6 +174,9 @@ end

Q8 = quaternion_group(8)
@test isa(Q8, PcGroup)

Dic12 = dicyclic_group(12)
@test isa(Dic12, PcGroup)

gl = GL(2, 3)
@test isa(gl, MatrixGroup)
Expand Down
Loading