python3 -m pip install dbt-core==1.8 dbt-databricksdbt --versiondbt initMove the auto-generated profile into your project directory:
cat /Users/abc/.dbt/profiles.yml >> ./profiles.yml
rm -rf /Users/abc/.dbt/profiles.ymldbt debugdbt seeddbt run --select project_1dbt docs generate
dbt docs serve- https://medium.com/@reshma.varghese.tech/how-i-built-a-mini-data-pipeline-using-dbt-sqlite-e3692288f974
- https://medium.com/dbsql-sme-engineering/how-to-build-an-end-to-end-testing-pipeline-with-dbt-on-databricks-cb6e179e646c
A strong DBT project should include the following:
- Test Cases (generic + custom + unit testing) : Implemented
- column level tagging and discription
- freshness test
- Table Descriptions & Documentation
- Generic Test Cases (unique, not null, relationships, accepted values) : Implemented
- Deployment Steps (Dev → QA → Prod): Implemented
- Incremental Models & Snapshots
- Multi‑environment Profiles (
profiles.yml) : Implemented - Schema Documentation Example: https://github.com/reshmavarghese15/data-pipeline-dbt-aws-demo/blob/main/data_pipeline_dbt_aws_demo/models/example/schema.yml
- Freshness Checks (
sources:withfreshness:block) - Data Quality Checks
- CI/CD Pipeline Setup (GitHub Actions / Azure DevOps / GitLab CI)