-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathwhale.py
517 lines (437 loc) · 19.2 KB
/
whale.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
"""
Mask R-CNN for Cetacean Photogrammatry
Written by Patrick Gray
Based on Balloon Color Splash Project by Waleed Abdulla
Copyright (c) 2018 Matterport, Inc.
Licensed under the MIT License (see LICENSE for details)
------------------------------------------------------------
Usage: import the module (see Jupyter notebooks for examples), or run from
the command line as such:
# Train a new model starting from pre-trained COCO weights
python3 .py train --dataset=/path/to/whale/dataset --weights=coco
# Resume training a model that you had trained earlier
python3 whale.py train --dataset=/path/to/whale/dataset --weights=last
# Train a new model starting from ImageNet weights
python3 whale.py train --dataset=/path/to/whale/dataset --weights=imagenet
# Apply color splash to an image
python3 whale.py splash --weights=/path/to/weights/file.h5 --image=<URL or path to file>
# Apply color splash to video using the last weights you trained
python3 whale.py splash --weights=last --video=<URL or path to file>
"""
import os
import sys
import json
import datetime
import numpy as np
import skimage.draw
from imgaug import augmenters as iaa
# Root directory of the project
MASK_RCNN_DIR = os.path.abspath("../Mask_RCNN/")
ROOT_DIR = os.path.abspath(".")
# Import Mask RCNN
sys.path.append(MASK_RCNN_DIR) # To find local version of the library
from mrcnn.config import Config
from mrcnn import model as modellib, utils
# Path to trained weights file
COCO_WEIGHTS_PATH = os.path.join(MASK_RCNN_DIR, "mask_rcnn_coco.h5")
# Directory to save logs and model checkpoints, if not provided
# through the command line argument --logs
DEFAULT_LOGS_DIR = os.path.join(ROOT_DIR, "logs")
############################################################
# Configurations
############################################################
class WhaleConfig(Config):
"""Configuration for training on the toy dataset.
Derives from the base Config class and overrides some values.
"""
# Give the configuration a recognizable name
NAME = "whale"
# Number of classes (including background)
NUM_CLASSES = 1 + 2 + 2 + 2 # Background + blue body/pec + humpback body/pec + minke body/pec
# Number of training steps per epoch
STEPS_PER_EPOCH = 265 # num of total training images
#STEPS_PER_EPOCH = 265*6 # num of total training images
# Skip detections with < 60% confidence
DETECTION_MIN_CONFIDENCE = 0.6
# NUMBER OF GPUs to use. For CPU training, use 1
GPU_COUNT = 1
# We use a GPU with 12GB memory, which can fit two images.
# Adjust down if you use a smaller GPU.
IMAGES_PER_GPU = 1
# If enabled, resizes instance masks to a smaller size to reduce
# memory load. Recommended when using high-resolution images.
USE_MINI_MASK = False
MINI_MASK_SHAPE = (56, 56) # (height, width) of the mini-mask
# Shape of output mask
# To change this you also need to change the neural network mask branch
# default
#MASK_SHAPE = [28, 28]
# increasing resolution
MASK_SHAPE = [56, 56]
#MASK_SHAPE = [112, 112]
RPN_TRAIN_ANCHORS_PER_IMAGE = 256
#RPN_TRAIN_ANCHORS_PER_IMAGE = 128
TRAIN_ROIS_PER_IMAGE = 200
#TRAIN_ROIS_PER_IMAGE = 100
LEARNING_MOMENTUM = 0.9
# Loss weights for more precise optimization.
# Can be used for R-CNN training setup.
LOSS_WEIGHTS = {
"rpn_class_loss": 1.,
"rpn_bbox_loss": 1.,
"mrcnn_class_loss": 2.,
"mrcnn_bbox_loss": 2.,
"mrcnn_mask_loss": 5.
}
############################################################
# Dataset
############################################################
class WhaleDataset(utils.Dataset):
def load_whale(self, dataset_dir, subset):
"""Load a subset of the Whale dataset.
dataset_dir: Root directory of the dataset.
subset: Subset to load: train or val
"""
# Add classes.
self.add_class("whale", 1, "balaenoptera_musculus_body")
self.add_class("whale", 2, "balaenoptera_musculus_pectoral")
self.add_class("whale", 3, "megaptera_novaeangliae_body")
self.add_class("whale", 4, "megaptera_novaeangliae_pectoral")
self.add_class("whale", 5, "balaenoptera_acutorostrata_body")
self.add_class("whale", 6, "balaenoptera_acutorostrata_pectoral")
# Train, validation, or test dataset?
assert subset in ["train", "val", "test"]
dataset_dir = os.path.join(dataset_dir, subset)
# Load annotations
# VGG Image Annotator saves each image in the form:
# { 'filename': '28503151_5b5b7ec140_b.jpg',
# 'regions': {
# '0': {
# 'region_attributes': {},
# 'shape_attributes': {
# 'all_points_x': [...],
# 'all_points_y': [...],
# 'name': 'polygon'}},
# ... more regions ...
# },
# 'size': 100202
# }
# We mostly care about the x and y coordinates of each region
annotations = json.load(open(os.path.join(dataset_dir, "via_region_data.json")))
annotations = list(annotations.values()) # don't need the dict keys
# The VIA tool saves images in the JSON even if they don't have any
# annotations. Skip unannotated images.
annotations = [a for a in annotations if a['regions']]
# Add images
for a in annotations:
# Get the x, y coordinates of points of the polygons that make up
# the outline of each object instance. There are stores in the
# shape_attributes (see json format above)
polygon_list = list(a['regions'].values())
# load_mask() needs the image size to convert polygons to masks.
# Unfortunately, VIA doesn't include it in JSON, so we must read
# the image. This is only managable since the dataset is tiny.
image_path = os.path.join(dataset_dir, a['filename'])
image = skimage.io.imread(image_path)
try:
height, width = image.shape[:2]
except ValueError:
height, width = image[0].shape[:2]
self.add_image(
"whale",
image_id=a['filename'], # use file name as a unique image id
path=image_path,
width=width, height=height,
polygon_list=polygon_list)
def load_mask(self, image_id):
"""Generate instance masks for an image.
Returns:
masks: A bool array of shape [height, width, instance count] with
one mask per instance.
class_ids: a 1D array of class IDs of the instance masks.
"""
# If not a whale dataset image, delegate to parent class.
info = self.image_info[image_id]
if info["source"] != "whale":
return super(self.__class__, self).load_mask(image_id)
# Build mask of shape [height, width, instance_count] and list
# of class IDs that correspond to each channel of the mask.
mask = np.zeros([info["height"], info["width"], len(info["polygon_list"])],
dtype=np.uint8)
class_ids = []
for i, p in enumerate(info["polygon_list"]):
class_id = 0
# determine the class based on the region attributes in the json dict
if p['region_attributes']['species'] == "balaenoptera_musculus":
class_id = 0
elif p['region_attributes']['species'] == "megaptera_novaeangliae":
class_id = 2
elif p['region_attributes']['species'] == "balaenoptera_acutorostrata":
class_id = 4
# Get indexes of pixels inside the polygon and set them to 1
rr, cc = skimage.draw.polygon(p['shape_attributes']['all_points_y'], p['shape_attributes']['all_points_x'])
if p['region_attributes']['body_part'] == "body":
try: # some of the masks were right on the edge of the image and thus I needed to catch those cases
mask[rr, cc, i] = 1 # this sets the mask = True for this area
except IndexError:
mask[rr-1, cc-1, i] = 1
class_id = class_id+1 # this adds to the previously determined class to get the actual class_id
elif p['region_attributes']['body_part'] == "pectoral":
try:
mask[rr, cc, i] = 1 # this sets the mask = True for this area
except IndexError:
mask[rr-1, cc-1, i] = 1
class_id = class_id+2 # this adds to the previously determined class to get the actual class_id
class_ids.append(class_id)
# Return mask, and array of class IDs of each instance.
return mask.astype(np.bool), np.array(class_ids, dtype=np.int32)
def load_image(self, image_id):
"""Load the specified image and return a [H,W,3] Numpy array.
"""
# Load image
image = skimage.io.imread(self.image_info[image_id]['path'])
# if image has issues with not having [H,W,C] fix it
try:
height, width, channels = image.shape
except ValueError:
image = image[0]
# If grayscale. Convert to RGB for consistency.
if image.ndim != 3:
image = skimage.color.gray2rgb(image)
# If has an alpha channel, remove it for consistency
if image.shape[-1] == 4:
image = image[..., :3]
return image
def image_reference(self, image_id):
"""Return the path of the image."""
info = self.image_info[image_id]
if info["source"] == "whale":
return info["path"]
else:
super(self.__class__, self).image_reference(image_id)
def train(model):
"""Train the model."""
# Training dataset.
dataset_train = WhaleDataset()
dataset_train.load_whale(args.dataset, "train")
dataset_train.prepare()
# Validation dataset
dataset_val = WhaleDataset()
dataset_val.load_whale(args.dataset, "val")
dataset_val.prepare()
# *** This training schedule is an example. Update to your needs ***
# Since we're using a very small dataset, and starting from
# COCO trained weights, we don't need to train too long. Also,
# no need to train all layers, just the heads should do it.
# first run
#layers_training='heads'
# second run
#layers_training='3+'
# third run
layers_training='all'
epochs_to_train=250
# adding image augmentation parameters
augmentation = iaa.Sometimes(.667, iaa.Sequential([
iaa.Fliplr(0.5), # horizontal flips
iaa.Crop(percent=(0, 0.1)), # random crops
# Small gaussian blur with random sigma between 0 and 0.25.
# But we only blur about 50% of all images.
iaa.Sometimes(0.5,
iaa.GaussianBlur(sigma=(0, 0.25))
),
# Strengthen or weaken the contrast in each image.
iaa.ContrastNormalization((0.75, 1.5)),
# Add gaussian noise.
# For 50% of all images, we sample the noise once per pixel.
# For the other 50% of all images, we sample the noise per pixel AND
# channel. This can change the color (not only brightness) of the
# pixels.
iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255)),
# Make some images brighter and some darker.
# In 20% of all cases, we sample the multiplier once per channel,
# which can end up changing the color of the images.
iaa.Multiply((0.8, 1.2)),
# Apply affine transformations to each image.
# Scale/zoom them, translate/move them, rotate them and shear them.
iaa.Affine(
scale={"x": (0.8, 1.2), "y": (0.8, 1.2)},
#translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)},
rotate=(-180, 180),
#shear=(-8, 8)
)
], random_order=True)) # apply augmenters in random order
# old image aug parameters
"""
augmentation = iaa.Sometimes(0.9, [
iaa.Fliplr(0.5),
iaa.Flipud(0.5),
iaa.Multiply((0.8, 1.2)),
iaa.GaussianBlur(sigma=(0.0, 5.0))
])
"""
print("Training 5+ layerss with augmentation.")
print("*****Beginning training*****")
print("config.LEARNING_RATE", config.LEARNING_RATE)
print("layers_training:", layers_training)
print("epochs_to_train:", epochs_to_train)
print("augmentation: ", augmentation)
print("---")
print("Images: {}\nClasses: {}".format(len(dataset_train.image_ids), dataset_train.class_names))
#print("Training network in its entirety with augmentation")
model.train(dataset_train, dataset_val,
learning_rate=config.LEARNING_RATE,
epochs=epochs_to_train,
layers=layers_training,
augmentation=augmentation)
def color_splash(image, mask):
"""Apply color splash effect.
image: RGB image [height, width, 3]
mask: instance segmentation mask [height, width, instance count]
Returns result image.
"""
# Make a grayscale copy of the image. The grayscale copy still
# has 3 RGB channels, though.
gray = skimage.color.gray2rgb(skimage.color.rgb2gray(image)) * 255
# We're treating all instances as one, so collapse the mask into one layer
mask = (np.sum(mask, -1, keepdims=True) >= 1)
# Copy color pixels from the original color image where mask is set
if mask.shape[0] > 0:
splash = np.where(mask, image, gray).astype(np.uint8)
else:
splash = gray
return splash
def detect_and_color_splash(model, image_path=None, video_path=None):
assert image_path or video_path
# Image or video?
if image_path:
# Run model detection and generate the color splash effect
print("Running on {}".format(args.image))
# Read image
image = skimage.io.imread(args.image)
# Detect objects
r = model.detect([image], verbose=1)[0]
# Color splash
splash = color_splash(image, r['masks'])
# Save output
file_name = "splash_{:%Y%m%dT%H%M%S}.png".format(datetime.datetime.now())
skimage.io.imsave(file_name, splash)
elif video_path:
import cv2
# Video capture
vcapture = cv2.VideoCapture(video_path)
width = int(vcapture.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(vcapture.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = vcapture.get(cv2.CAP_PROP_FPS)
# Define codec and create video writer
file_name = "splash_{:%Y%m%dT%H%M%S}.avi".format(datetime.datetime.now())
vwriter = cv2.VideoWriter(file_name,
cv2.VideoWriter_fourcc(*'MJPG'),
fps, (width, height))
count = 0
success = True
while success:
print("frame: ", count)
# Read next image
success, image = vcapture.read()
if success:
# OpenCV returns images as BGR, convert to RGB
image = image[..., ::-1]
# Detect objects
r = model.detect([image], verbose=0)[0]
# Color splash
splash = color_splash(image, r['masks'])
# RGB -> BGR to save image to video
splash = splash[..., ::-1]
# Add image to video writer
vwriter.write(splash)
count += 1
vwriter.release()
print("Saved to ", file_name)
############################################################
# Training
############################################################
if __name__ == '__main__':
import argparse
# Parse command line arguments
parser = argparse.ArgumentParser(
description='Train Mask R-CNN to detect whales.')
parser.add_argument("command",
metavar="<command>",
help="'train' or 'splash'")
parser.add_argument('--dataset', required=False,
metavar="/path/to/whale/dataset/",
help='Directory of the Whale dataset')
parser.add_argument('--weights', required=True,
metavar="/path/to/weights.h5",
help="Path to weights .h5 file or 'coco'")
parser.add_argument('--logs', required=False,
default=DEFAULT_LOGS_DIR,
metavar="/path/to/logs/",
help='Logs and checkpoints directory (default=logs/)')
parser.add_argument('--image', required=False,
metavar="path or URL to image",
help='Image to apply the color splash effect on')
parser.add_argument('--video', required=False,
metavar="path or URL to video",
help='Video to apply the color splash effect on')
args = parser.parse_args()
# Validate arguments
if args.command == "train":
assert args.dataset, "Argument --dataset is required for training"
elif args.command == "splash":
assert args.image or args.video,\
"Provide --image or --video to apply color splash"
print("Weights: ", args.weights)
print("Dataset: ", args.dataset)
print("Logs: ", args.logs)
# Configurations
if args.command == "train":
config = WhaleConfig()
else:
class InferenceConfig(WhaleConfig):
# Set batch size to 1 since we'll be running inference on
# one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU
GPU_COUNT = 1
IMAGES_PER_GPU = 1
config = InferenceConfig()
config.display()
# Create model
if args.command == "train":
model = modellib.MaskRCNN(mode="training", config=config,
model_dir=args.logs)
else:
model = modellib.MaskRCNN(mode="inference", config=config,
model_dir=args.logs)
# Select weights file to load
if args.weights.lower() == "coco":
weights_path = COCO_WEIGHTS_PATH
# Download weights file
if not os.path.exists(weights_path):
utils.download_trained_weights(weights_path)
elif args.weights.lower() == "last":
# Find last trained weights
weights_path = model.find_last()[1]
elif args.weights.lower() == "imagenet":
# Start from ImageNet trained weights
weights_path = model.get_imagenet_weights()
else:
weights_path = args.weights
# Load weights
print("Loading weights ", weights_path)
if args.weights.lower() == "coco":
# Exclude the last layers because they require a matching
# number of classes
model.load_weights(weights_path, by_name=True, exclude=[
"mrcnn_class_logits", "mrcnn_bbox_fc",
"mrcnn_bbox", "mrcnn_mask"])
else:
model.load_weights(weights_path, by_name=True)
# Train or evaluate
if args.command == "train":
train(model)
elif args.command == "splash":
detect_and_color_splash(model, image_path=args.image,
video_path=args.video)
else:
print("'{}' is not recognized. "
"Use 'train' or 'splash'".format(args.command))