Skip to content

Market Calendar Tool is a Python package that scrapes economic calendar data from multiple financial websites and returns it as pandas DataFrames for easy analysis.

License

Notifications You must be signed in to change notification settings

pavelkrusek/market-calendar-tool

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

81 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Market Calendar Tool

A Python package for scraping economic calendar data from various financial websites.

Legal Notice

Please note that scraping data from websites must comply with the site's terms of service and legal requirements. The robots.txt files of the supported sites do not explicitly restrict scraping, but users should ensure they comply with local regulations and the website's terms.

Features

  • Multi-Site Support: Scrape data from multiple sites:

  • Flexible Date Range: Specify custom date ranges for scraping.

  • Extended Data Retrieval: Option to retrieve extended data for each event.

  • Configurable Concurrency: Use ScrapeOptions to configure the number of concurrent asyncio tasks (max_parallel_tasks), optimizing scraping performance based on system capabilities.

  • Easy-to-Use API: Simple and intuitive function to get you started quickly.

  • DataFrame Output: Returns raw data scraped from the website as pandas DataFrame(s) for further processing.

  • Data Handling: Always returns scraped data encapsulated in a ScrapeResult object for consistent data management.

  • Data Cleaning and Validation: Provides functionality to clean and validate scraped data for further processing, ensuring data quality and consistency.

  • Data Saving with Metadata: Automatically saves scraped data with file names that include the site name, date range, and scrape timestamp, ensuring clarity and uniqueness.

  • Skip Empty DataFrames: Automatically skips saving any empty DataFrames, preventing unnecessary files from being created.

  • Serialization Support: Supports serialization of ScrapeResult objects using the pickle module, allowing for easy storage and retrieval of scraped data.

Implemented Features

  • Economic Calendar Scraping with Multi-Site Support
    • ForexFactory
    • MetalsMine
    • EnergyExch
    • CryptoCraft
  • Flexible Date Range Configuration
  • Extended Data Retrieval
  • Configurable Concurrency
  • DataFrame Output
  • Data Cleaning and Validation
  • DataFrame Saving with Metadata (CSV, parquet)
  • Serialization Support (pickle)

Planned Features

  • Data Preprocessing for Vector Database (FAISS)
  • LangChain Tool Integration
    • Custom Tool Implementation
    • Flow Integration Support

Installation

Install the package via pip:

pip install market-calendar-tool

Requirements

  • Python Version: Python 3.12 or higher is required.
  • Dependencies:
Dependency Version
loguru ^0.7.2
requests ^2.32.3
pandas ^2.2.3
asyncio ^3.4.3
aiohttp ^3.10.10
pyarrow ^17.0.0
pycountry ^24.6.1
beautifulsoup4 ^4.12.3

Usage

Import the package and use the scrape_calendar function with optional ScrapeOptions for advanced configurations.

from market_calendar_tool import scrape_calendar, clean_calendar_data, Site, ScrapeOptions

# Stage 1: Scrape raw data from today to one week ahead from ForexFactory
raw_data = scrape_calendar()

# Stage 2: Clean the data
cleaned_data = clean_calendar_data(raw_data)

# Specify a different site
raw_data = scrape_calendar(site=Site.METALSMINE)
cleaned_data = clean_calendar_data(raw_data)

# Specify date range
raw_data = scrape_calendar(date_from="2024-01-01", date_to="2024-01-07")
cleaned_data = clean_calendar_data(raw_data)

# Retrieve extended data
result = scrape_calendar(extended=True)
print(result.base)     # Basic event data
print(result.specs)    # Event specifications
print(result.history)  # Historical data
print(result.news)     # Related news articles

# Advanced usage: configure asyncio task concurrency
custom_options = ScrapeOptions(max_parallel_tasks=10)
raw_data = scrape_calendar(options=custom_options)
cleaned_data = clean_calendar_data(raw_data)

# Save the scraped data as DataFrames with metadata in the file names to a specific directory
result.save_to_dataframes(output_dir="output_data")

# Save the entire ScrapeResult object to a pickle file
result.save(output_dir="output_data")  # Filename autogenerated, e.g., scrape_result_20241028173859.pickle

# Load the latest ScrapeResult object from the current directory
loaded_result = ScrapeResult.load()
print(loaded_result)

Parameters

  • site (optional): The website to scrape data from. Default is Site.FOREXFACTORY.
    • Options:
      • Site.FOREXFACTORY
      • Site.METALSMINE
      • Site.ENERGYEXCH
      • Site.CRYPTOCRAFT
  • date_from (optional): Start date in "YYYY-MM-DD" format.
  • date_to (optional): End date in "YYYY-MM-DD" format.
  • extended (optional): Boolean flag to retrieve extended data. Default is False.
  • options (optional): An instance of ScrapeOptions to configure advanced scraping settings.

Return Values

scrape_calendar: Always returns a ScrapeResult object containing the raw scraped data. clean_calendar_data: Returns a ScrapeResult object containing the cleaned data.

API Reference

scrape_calendar

Function to scrape raw calendar data from the specified site within the given date range.

Signature:

def scrape_calendar(
    site: Site = Site.FOREXFACTORY,
    date_from: Optional[str] = None,
    date_to: Optional[str] = None,
    extended: bool = False,
    options: Optional[ScrapeOptions] = None,
) -> ScrapeResult:
    ...

Parameters:

  • site (Site): The target site to scrape. Defaults to Site.FOREXFACTORY.
  • date_from (Optional[str]): The start date for scraping in 'YYYY-MM-DD' format.
  • date_to (Optional[str]): The end date for scraping in 'YYYY-MM-DD' format.
  • extended (bool): Whether to perform extended scraping. Defaults to False.
  • options (Optional[ScrapeOptions]): Additional scraping configurations.

Returns:

  • ScrapeResult: The raw scraped data encapsulated in a ScrapeResult object.

clean_calendar_data

Function to clean the scraped calendar data.

Signature:

def clean_calendar_data(scrape_result: ScrapeResult) -> ScrapeResult:
    ...

Parameters:

  • scrape_result (ScrapeResult): The raw scraped data to be cleaned.

Returns:

  • ScrapeResult: The cleaned data encapsulated in a ScrapeResult object.

Site Enum

Enumeration of supported websites.

  • Site.FOREXFACTORY
  • Site.METALSMINE
  • Site.ENERGYEXCH
  • Site.CRYPTOCRAFT

ScrapeOptions Data Class

Contains configurable options for scraping.

Attributes:

  • max_parallel_tasks (int): The maximum number of concurrent asyncio tasks. Default is 5.

Example:

from market_calendar_tool import ScrapeOptions

# Create custom options with increased concurrency
custom_options = ScrapeOptions(max_parallel_tasks=10)

ScrapeResult Data Class

Contains extended data when extended=True.

  • site (Site): The website from which the data was scraped.
  • date_from (str): The start date of the scraped data range in "YYYY-MM-DD" format.
  • date_to (str): The end date of the scraped data range in "YYYY-MM-DD" format.
  • scraped_at (float): UNIX timestamp indicating when the scraping occurred.
  • base (pd.DataFrame): Basic event data.
  • specs (pd.DataFrame): Event specifications.
  • history (pd.DataFrame): Historical data.
  • news (pd.DataFrame): Related news articles.

save_to_dataframes

Overrides the save_to_dataframes method to include site name, date range, and scrape timestamp in the file prefix. Also skips saving empty DataFrames.

Signature:

def save_to_dataframes(
    self,
    save_format: SaveFormat = SaveFormat.PARQUET,
    output_dir: Optional[str] = None
) -> None:
    ...

Parameters:

  • save_format (SaveFormat, optional): The format to save files in. Defaults to SaveFormat.PARQUET.
  • output_dir (Optional[str], optional): The directory to save files to. Defaults to the current working directory.

Behavior:

  • Constructs a file_prefix that includes the site name, date_from, date_to, and a formatted scraped_at timestamp.
  • Saves only non-empty DataFrame attributes (base, specs, history, news) with the constructed prefix.
  • Skips any empty DataFrames, avoiding the creation of unnecessary files.

Example:

# Save the scraped data with metadata in the file names
result.save(output_dir="desired/output/path")

save

Serializes and saves the entire ScrapeResult object to a pickle file. If file_name is not provided, it generates one based on the scraped_at timestamp.

Signature:

def save(
    self,
    output_dir: Optional[str] = None,
) -> None:
    ...

Parameters:

  • output_dir (Optional[str], optional): The directory to save the pickle file. Defaults to the current working directory.

Behavior:

  • Constructs a filename in the format scrape_result_YYYYMMDDHHMMSS.pickle based on the scraped_at timestamp.
  • Saves the entire ScrapeResult object as a pickle file in the specified directory.

Example:

# Save the entire ScrapeResult object using pickle with an autogenerated filename
result.save(output_dir="output_data")

load

Class method to load a ScrapeResult object from a pickle file. If file_path is not provided, it automatically loads the latest scrape_result_YYYYMMDDHHMMSS.pickle file from the current directory.

Signature:

@classmethod
def load(cls, file_path: Optional[str] = None) -> "ScrapeResult":
    ...

Parameters:

  • file_path (Optional[str]): Path to the pickle file. If None, the method searches for the latest pickle file in the current directory.

Returns:

  • ScrapeResult: The deserialized ScrapeResult object.

Example:

# Load the latest ScrapeResult object from the current directory
loaded_result = ScrapeResult.load()
print(loaded_result)

# Or load a specific pickle file
loaded_specific = ScrapeResult.load(file_path="output_data/scrape_result_20241028173859.pickle")
print(loaded_specific)

Configuration

ScrapeOptions

The ScrapeOptions dataclass allows you to configure advanced scraping settings.

Parameters:

  • max_parallel_tasks (int, optional): The number of concurrent asyncio tasks to run. Increasing this number can speed up the scraping process but may lead to higher resource usage. Default is 5.

Usage Example:

from market_calendar_tool import scrape_calendar, ScrapeOptions

# Configure scraper to use 10 parallel asyncio tasks
options = ScrapeOptions(max_parallel_tasks=10)
result = scrape_calendar(extended=True, options=options)

Contributing

Contributions are welcome! Please open an issue or submit a pull request on GitHub.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Feel free to customize this package to better suit your project's needs!

About

Market Calendar Tool is a Python package that scrapes economic calendar data from multiple financial websites and returns it as pandas DataFrames for easy analysis.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages