The file twisted.sage
implements the computation of twisted Hodge numbers for complete intersections, due to Brückmann in the following papers
-
[MR0399102] Brückmann, Peter: Zur Kohomologie von projektiven Hyperflächen. Beiträge zur Algebra und Geometrie, 2. 4 (1973), 87–101 (1974).
-
[MR0417202] Brückmann, Peter: Zur Kohomologie von vollständigen Durchschnitten mit Koeffizienten in der Garbe der Keime der Differentialformen. Math. Nachr. 71 (1976), 203–210.
-
[MR0447266] Brückmann, Peter: Zur Kohomologie von vollständigen Durchschnitten mit Koeffizienten in der Garbe der Keime der Differentialformen. II. Math. Nachr. 77 (1977), 307–318.
Make sure that Sage knows about twisted.sage
, probably by doing load("twisted.sage")
. There is ample documentation in the file, which can be acessed via
twisted_hodge_number?
TwistedHodgeDiamond?
To get the (untwisted) Hodge diamond of a quartic surface, use
sage: print(TwistedHodgeDiamond((3, 4)))
1
0 0
1 20 1
0 0
1
This luckily agrees with the output for
sage: print(TwistedHodgeDiamond((4, [3, 2])))
sage: print(TwistedHodgeDiamond((5, [2, 2, 2])))
If you rather care about twisted Hodge diamonds (otherwise you could also use the Hodge diamond cutter), you can add a twist parameter. For example, to compute the twisted Hodge diamond for projective 3-space, twisted by O(4)
(so that we are in fact computing the Hochschild-Kostant-Rosenberg decomposition of Hochschild cohomology) as follows
sage: print(TwistedHodgeDiamond((3, []), 4))
0
0 0
0 0 0
1 0 0 0
15 0 0
45 0
35
For more information, see the docstrings.
Also check out the documentation for the auxiliary class CompleteIntersection
, and if you are into Hochschild cohomology the class PolyvectorParallelogram
.
- Pieter Belmans
- Piet Glas