Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -33,28 +33,27 @@ def _get_scorers_to_add(estimator, y) -> dict[str, Any]:
),
}
if ml_task == "binary-classification":
return {
"roc_auc": "roc_auc",
"brier_score_loss": metrics.make_scorer(
metrics.brier_score_loss, response_method="predict_proba"
),
scorers_to_add = {
"recall": "recall",
"precision": "precision",
"roc_auc": "roc_auc",
}
if ml_task == "multiclass-classification":
if hasattr(estimator, "predict_proba"):
return {
"recall_weighted": "recall_weighted",
"precision_weighted": "precision_weighted",
"roc_auc_ovr_weighted": "roc_auc_ovr_weighted",
"log_loss": metrics.make_scorer(
metrics.log_loss, response_method="predict_proba"
),
}
return {
scorers_to_add["brier_score_loss"] = metrics.make_scorer(
metrics.brier_score_loss, response_method="predict_proba"
)
return scorers_to_add
if ml_task == "multiclass-classification":
scorers_to_add = {
"recall_weighted": "recall_weighted",
"precision_weighted": "precision_weighted",
}
if hasattr(estimator, "predict_proba"):
scorers_to_add["roc_auc_ovr_weighted"] = "roc_auc_ovr_weighted"
scorers_to_add["log_loss"] = metrics.make_scorer(
metrics.log_loss, response_method="predict_proba"
)
return scorers_to_add
return {}


Expand Down Expand Up @@ -104,9 +103,11 @@ def _add_scorers(scorers, scorers_to_add):

internal_scorer = _MultimetricScorer(
scorers={
name: check_scoring(estimator=None, scoring=scoring)
if isinstance(scoring, str)
else scoring
name: (
check_scoring(estimator=None, scoring=scoring)
if isinstance(scoring, str)
else scoring
)
for name, scoring in scorers_to_add.items()
}
)
Expand Down
61 changes: 61 additions & 0 deletions skore/tests/unit/sklearn/test_cross_validate.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,9 @@
import pytest
from sklearn.datasets import make_classification, make_regression
from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.svm import SVC
from skore.sklearn.cross_validation import CrossValidationReporter
from skore.sklearn.cross_validation.cross_validation_helpers import _get_scorers_to_add


def prepare_cv():
Expand Down Expand Up @@ -35,3 +40,59 @@ def test_cross_validate_return_estimator():
assert "indices" in reporter.cv_results
assert "estimator" in reporter._cv_results
assert "indices" in reporter._cv_results


@pytest.mark.parametrize(
"estimator,dataset_func,dataset_kwargs,expected_keys",
[
pytest.param(
LinearRegression(),
make_regression,
{"n_targets": 1},
{"r2", "root_mean_squared_error"},
id="regression",
),
pytest.param(
LogisticRegression(),
make_classification,
{"n_classes": 2},
{"recall", "precision", "roc_auc", "brier_score_loss"},
id="binary_classification_with_proba",
),
pytest.param(
SVC(probability=False),
make_classification,
{"n_classes": 2},
{"recall", "precision", "roc_auc"},
id="binary_classification_without_proba",
),
pytest.param(
LogisticRegression(),
make_classification,
{"n_classes": 3, "n_clusters_per_class": 1},
{
"recall_weighted",
"precision_weighted",
"roc_auc_ovr_weighted",
"log_loss",
},
id="multiclass_with_proba",
),
pytest.param(
SVC(probability=False),
make_classification,
{"n_classes": 3, "n_clusters_per_class": 1},
{"recall_weighted", "precision_weighted"},
id="multiclass_without_proba",
),
],
)
def test_get_scorers_to_add(estimator, dataset_func, dataset_kwargs, expected_keys):
"""Check that the scorers to add are correct.

Non-regression test for:
https://github.com/probabl-ai/skore/issues/1050
"""
X, y = dataset_func(**dataset_kwargs)
scorers = _get_scorers_to_add(estimator, y)
assert set(scorers.keys()) == expected_keys
Loading