A TypeScript framework for building MCP servers capable of handling client sessions.
Note
For a Python implementation, see FastMCP.
- Simple Tool, Resource, Prompt definition
- Authentication
- Sessions
- Image content
- Logging
- Error handling
- SSE
- CORS (enabled by default)
- Progress notifications
- Typed server events
- Prompt argument auto-completion
- Sampling
- Automated SSE pings
- Roots
- CLI for testing and debugging
npm install fastmcp
Note
There are many real-world examples of using FastMCP in the wild. See the Showcase for examples.
import { FastMCP } from "fastmcp";
import { z } from "zod"; // Or any validation library that supports Standard Schema
const server = new FastMCP({
name: "My Server",
version: "1.0.0",
});
server.addTool({
name: "add",
description: "Add two numbers",
parameters: z.object({
a: z.number(),
b: z.number(),
}),
execute: async (args) => {
return String(args.a + args.b);
},
});
server.start({
transportType: "stdio",
});
That's it! You have a working MCP server.
You can test the server in terminal with:
git clone https://github.com/punkpeye/fastmcp.git
cd fastmcp
npm install
# Test the addition server example using CLI:
npx fastmcp dev src/examples/addition.ts
# Test the addition server example using MCP Inspector:
npx fastmcp inspect src/examples/addition.ts
You can also run the server with SSE support:
server.start({
transportType: "sse",
sse: {
endpoint: "/sse",
port: 8080,
},
});
This will start the server and listen for SSE connections on http://localhost:8080/sse
.
You can then use SSEClientTransport
to connect to the server:
import { SSEClientTransport } from "@modelcontextprotocol/sdk/client/sse.js";
const client = new Client(
{
name: "example-client",
version: "1.0.0",
},
{
capabilities: {},
},
);
const transport = new SSEClientTransport(new URL(`http://localhost:8080/sse`));
await client.connect(transport);
Tools in MCP allow servers to expose executable functions that can be invoked by clients and used by LLMs to perform actions.
FastMCP uses the Standard Schema specification for defining tool parameters. This allows you to use your preferred schema validation library (like Zod, ArkType, or Valibot) as long as it implements the spec.
Zod Example:
import { z } from "zod";
server.addTool({
name: "fetch-zod",
description: "Fetch the content of a url (using Zod)",
parameters: z.object({
url: z.string(),
}),
execute: async (args) => {
return await fetchWebpageContent(args.url);
},
});
ArkType Example:
import { type } from "arktype";
server.addTool({
name: "fetch-arktype",
description: "Fetch the content of a url (using ArkType)",
parameters: type({
url: "string",
}),
execute: async (args) => {
return await fetchWebpageContent(args.url);
},
});
Valibot Example:
Valibot requires the peer dependency @valibot/to-json-schema.
import * as v from "valibot";
server.addTool({
name: "fetch-valibot",
description: "Fetch the content of a url (using Valibot)",
parameters: v.object({
url: v.string(),
}),
execute: async (args) => {
return await fetchWebpageContent(args.url);
},
});
execute
can return a string:
server.addTool({
name: "download",
description: "Download a file",
parameters: z.object({
url: z.string(),
}),
execute: async (args) => {
return "Hello, world!";
},
});
The latter is equivalent to:
server.addTool({
name: "download",
description: "Download a file",
parameters: z.object({
url: z.string(),
}),
execute: async (args) => {
return {
content: [
{
type: "text",
text: "Hello, world!",
},
],
};
},
});
If you want to return a list of messages, you can return an object with a content
property:
server.addTool({
name: "download",
description: "Download a file",
parameters: z.object({
url: z.string(),
}),
execute: async (args) => {
return {
content: [
{ type: "text", text: "First message" },
{ type: "text", text: "Second message" },
],
};
},
});
Use the imageContent
to create a content object for an image:
import { imageContent } from "fastmcp";
server.addTool({
name: "download",
description: "Download a file",
parameters: z.object({
url: z.string(),
}),
execute: async (args) => {
return imageContent({
url: "https://example.com/image.png",
});
// or...
// return imageContent({
// path: "/path/to/image.png",
// });
// or...
// return imageContent({
// buffer: Buffer.from("iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNkYAAAAAYAAjCB0C8AAAAASUVORK5CYII=", "base64"),
// });
// or...
// return {
// content: [
// await imageContent(...)
// ],
// };
},
});
The imageContent
function takes the following options:
url
: The URL of the image.path
: The path to the image file.buffer
: The image data as a buffer.
Only one of url
, path
, or buffer
must be specified.
The above example is equivalent to:
server.addTool({
name: "download",
description: "Download a file",
parameters: z.object({
url: z.string(),
}),
execute: async (args) => {
return {
content: [
{
type: "image",
data: "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNkYAAAAAYAAjCB0C8AAAAASUVORK5CYII=",
mimeType: "image/png",
},
],
};
},
});
Tools can log messages to the client using the log
object in the context object:
server.addTool({
name: "download",
description: "Download a file",
parameters: z.object({
url: z.string(),
}),
execute: async (args, { log }) => {
log.info("Downloading file...", {
url,
});
// ...
log.info("Downloaded file");
return "done";
},
});
The log
object has the following methods:
debug(message: string, data?: SerializableValue)
error(message: string, data?: SerializableValue)
info(message: string, data?: SerializableValue)
warn(message: string, data?: SerializableValue)
The errors that are meant to be shown to the user should be thrown as UserError
instances:
import { UserError } from "fastmcp";
server.addTool({
name: "download",
description: "Download a file",
parameters: z.object({
url: z.string(),
}),
execute: async (args) => {
if (args.url.startsWith("https://example.com")) {
throw new UserError("This URL is not allowed");
}
return "done";
},
});
Tools can report progress by calling reportProgress
in the context object:
server.addTool({
name: "download",
description: "Download a file",
parameters: z.object({
url: z.string(),
}),
execute: async (args, { reportProgress }) => {
reportProgress({
progress: 0,
total: 100,
});
// ...
reportProgress({
progress: 100,
total: 100,
});
return "done";
},
});
Resources represent any kind of data that an MCP server wants to make available to clients. This can include:
- File contents
- Screenshots and images
- Log files
- And more
Each resource is identified by a unique URI and can contain either text or binary data.
server.addResource({
uri: "file:///logs/app.log",
name: "Application Logs",
mimeType: "text/plain",
async load() {
return {
text: await readLogFile(),
};
},
});
Note
load
can return multiple resources. This could be used, for example, to return a list of files inside a directory when the directory is read.
async load() {
return [
{
text: "First file content",
},
{
text: "Second file content",
},
];
}
You can also return binary contents in load
:
async load() {
return {
blob: 'base64-encoded-data'
};
}
You can also define resource templates:
server.addResourceTemplate({
uriTemplate: "file:///logs/{name}.log",
name: "Application Logs",
mimeType: "text/plain",
arguments: [
{
name: "name",
description: "Name of the log",
required: true,
},
],
async load({ name }) {
return {
text: `Example log content for ${name}`,
};
},
});
Provide complete
functions for resource template arguments to enable automatic completion:
server.addResourceTemplate({
uriTemplate: "file:///logs/{name}.log",
name: "Application Logs",
mimeType: "text/plain",
arguments: [
{
name: "name",
description: "Name of the log",
required: true,
complete: async (value) => {
if (value === "Example") {
return {
values: ["Example Log"],
};
}
return {
values: [],
};
},
},
],
async load({ name }) {
return {
text: `Example log content for ${name}`,
};
},
});
Prompts enable servers to define reusable prompt templates and workflows that clients can easily surface to users and LLMs. They provide a powerful way to standardize and share common LLM interactions.
server.addPrompt({
name: "git-commit",
description: "Generate a Git commit message",
arguments: [
{
name: "changes",
description: "Git diff or description of changes",
required: true,
},
],
load: async (args) => {
return `Generate a concise but descriptive commit message for these changes:\n\n${args.changes}`;
},
});
Prompts can provide auto-completion for their arguments:
server.addPrompt({
name: "countryPoem",
description: "Writes a poem about a country",
load: async ({ name }) => {
return `Hello, ${name}!`;
},
arguments: [
{
name: "name",
description: "Name of the country",
required: true,
complete: async (value) => {
if (value === "Germ") {
return {
values: ["Germany"],
};
}
return {
values: [],
};
},
},
],
});
If you provide an enum
array for an argument, the server will automatically provide completions for the argument.
server.addPrompt({
name: "countryPoem",
description: "Writes a poem about a country",
load: async ({ name }) => {
return `Hello, ${name}!`;
},
arguments: [
{
name: "name",
description: "Name of the country",
required: true,
enum: ["Germany", "France", "Italy"],
},
],
});
FastMCP allows you to authenticate
clients using a custom function:
import { AuthError } from "fastmcp";
const server = new FastMCP({
name: "My Server",
version: "1.0.0",
authenticate: ({request}) => {
const apiKey = request.headers["x-api-key"];
if (apiKey !== '123') {
throw new Response(null, {
status: 401,
statusText: "Unauthorized",
});
}
// Whatever you return here will be accessible in the `context.session` object.
return {
id: 1,
}
},
});
Now you can access the authenticated session data in your tools:
server.addTool({
name: "sayHello",
execute: async (args, { session }) => {
return `Hello, ${session.id}!`;
},
});
The session
object is an instance of FastMCPSession
and it describes active client sessions.
server.sessions;
We allocate a new server instance for each client connection to enable 1:1 communication between a client and the server.
You can listen to events emitted by the server using the on
method:
server.on("connect", (event) => {
console.log("Client connected:", event.session);
});
server.on("disconnect", (event) => {
console.log("Client disconnected:", event.session);
});
FastMCPSession
represents a client session and provides methods to interact with the client.
Refer to Sessions for examples of how to obtain a FastMCPSession
instance.
requestSampling
creates a sampling request and returns the response.
await session.requestSampling({
messages: [
{
role: "user",
content: {
type: "text",
text: "What files are in the current directory?",
},
},
],
systemPrompt: "You are a helpful file system assistant.",
includeContext: "thisServer",
maxTokens: 100,
});
The clientCapabilities
property contains the client capabilities.
session.clientCapabilities;
The loggingLevel
property describes the logging level as set by the client.
session.loggingLevel;
The roots
property contains the roots as set by the client.
session.roots;
The server
property contains an instance of MCP server that is associated with the session.
session.server;
You can listen to events emitted by the session using the on
method:
session.on("rootsChanged", (event) => {
console.log("Roots changed:", event.roots);
});
session.on("error", (event) => {
console.error("Error:", event.error);
});
The fastest way to test and debug your server is with fastmcp dev
:
npx fastmcp dev server.js
npx fastmcp dev server.ts
This will run your server with mcp-cli
for testing and debugging your MCP server in the terminal.
Another way is to use the official MCP Inspector
to inspect your server with a Web UI:
npx fastmcp inspect server.ts
Follow the guide https://modelcontextprotocol.io/quickstart/user and add the following configuration:
{
"mcpServers": {
"my-mcp-server": {
"command": "npx",
"args": [
"tsx",
"/PATH/TO/YOUR_PROJECT/src/index.ts"
],
"env": {
"YOUR_ENV_VAR": "value"
}
}
}
}
Note
If you've developed a server using FastMCP, please submit a PR to showcase it here!
- apinetwork/piapi-mcp-server - generate media using Midjourney/Flux/Kling/LumaLabs/Udio/Chrip/Trellis
- domdomegg/computer-use-mcp - controls your computer
- LiterallyBlah/Dradis-MCP – manages projects and vulnerabilities in Dradis
- Meeting-Baas/meeting-mcp - create meeting bots, search transcripts, and manage recording data
- drumnation/unsplash-smart-mcp-server – enables AI agents to seamlessly search, recommend, and deliver professional stock photos from Unsplash
- ssmanji89/halopsa-workflows-mcp - HaloPSA Workflows integration with AI assistants
- aiamblichus/mcp-chat-adapter – provides a clean interface for LLMs to use chat completion
- FastMCP is inspired by the Python implementation by Jonathan Lowin.
- Parts of codebase were adopted from LiteMCP.
- Parts of codebase were adopted from Model Context protocolでSSEをやってみる.