Skip to content

pyiron/semantikon

semantikon

Push-Pull Coverage Status

Logo

Motivation

Let's take a look at the following function:

def get_speed(distance: float, time: float) -> float:
    return distance / time

For you as a human, it is clear that this is a function to calculate the speed for a given distance and a time. But for a computer, it is just a function that takes two floats and returns a float. The computer does not know what the inputs and outputs mean. This is where semantikon comes in. It provides a way to give scientific context to the inputs and outputs, as well as to the function itself.

Installation

You can install semantikon via pip:

pip install semantikon

You can also install semantikon via conda:

conda install -c conda-forge semantikon

Overview

In the realm of the workflow management systems, there are well defined inputs and outputs for each node. semantikon is a Python package to give scientific context to node inputs and outputs by providing type hinting and interpreters. Therefore, it consists of two fully separate parts: type hinting and interpreters.

Type hinting

semantikon provides a way to define types for any number of input parameters and any number of output values for function via type hinting, in particular: data type, unit and ontological type. Type hinting is done with the function u, which requires the type, and optionally you can define the units and the ontological type. The type hinting is done in the following way:

>>> from semantikon.metadata import u
>>> from rdflib import Namespace
>>>
>>> EX = Namespace("http://example.org/")
>>>
>>> def get_speed(
...     distance: u(float, units="meter", uri=EX.distance),
...     time: u(float, units="second", uri=EX.time),
... ) -> u(float, units="meter/second", label="speed", uri=EX.speed):
...     return distance / time

semantikon's type hinting does not require to follow any particular standard. It only needs to be compatible with the interpreter applied (s. below).

You can also type-hint the inputs and outputs of a function using a class, i.e.:

>>> from semantikon.metadata import u
>>> from semantikon.converter import semantikon_class
>>> from rdflib import Namespace
>>>
>>> EX = Namespace("http://example.org/")
>>>
>>> @semantikon_class
... class MyRecord:
...     distance: u(float, units="meter", uri=EX.distance)
...     time: u(float, units="second", uri=EX.time)
...     result: u(float, units="meter/second", label="speed", uri=EX.speed)
>>>
>>> def get_speed(distance: MyRecord.distance, time: MyRecord.time) -> MyRecord.result:
...     return distance / time

This is equivalent to the previous example. Moreover, if you need to modify some parameters, you can use u again, e.g. u(MyRecord.distance, units="kilometer").

Interpreters

Interpreters are wrappers or decorators that inspect and process type-hinted metadata at runtime.

General interpreter

In order to extract argument information, you can use the functions parse_input_args and parse_output_args. parse_input_args parses the input variables and return a dictionary with the variable names as keys and the variable information as values. parse_output_args parses the output variables and returns a dictionary with the variable information if there is a single output variable, or a list of dictionaries if it is a tuple.

Example:

>>> from semantikon.metadata import u
>>> from semantikon.converter import parse_input_args, parse_output_args
>>> from rdflib import Namespace
>>>
>>> EX = Namespace("http://example.org/")
>>>
>>> def get_speed(
...     a: u(float, units="meter", uri=EX.distance),
...     b: u(float, units="second", uri=EX.time),
... ) -> u(float, units="meter/second", label="speed", uri=EX.speed):
...     return a / b
>>>
>>> print(dict(sorted({k: dict(sorted(v.items())) for k, v in parse_input_args(get_speed).items()}.items())))
{'a': {'dtype': <class 'float'>, 'units': 'meter', 'uri': rdflib.term.URIRef('http://example.org/distance')}, 'b': {'dtype': <class 'float'>, 'units': 'second', 'uri': rdflib.term.URIRef('http://example.org/time')}}

>>> print(dict(sorted(parse_output_args(get_speed).items())))
{'dtype': <class 'float'>, 'label': 'speed', 'units': 'meter/second', 'uri': rdflib.term.URIRef('http://example.org/speed')}

Unit conversion with pint

semantikon provides a way to interpret the types of inputs and outputs of a function via a decorator, in order to check consistency of the types and to convert them if necessary. Currently, semantikon provides an interpreter for pint.UnitRegistry objects. The interpreter is applied in the following way:

>>> from semantikon.metadata import u
>>> from semantikon.converter import units
>>> from pint import UnitRegistry
>>>
>>> @units
... def get_speed(
...     a: u(float, units="meter"),
...     b: u(float, units="second")
... ) -> u(float, units="meter/second", label="speed"):
...     return a / b
>>>
>>> ureg = UnitRegistry()
>>>
>>> print(get_speed(1 * ureg.meter, 1 * ureg.second))
1.0 meter / second

The interpreters check all types and, if necessary, convert them to the expected types before the function is executed, in order for all possible errors would be raised before the function execution. The interpreters convert the types in the way that the underlying function would receive the raw values.

In case there are multiple outputs, the type hints are to be passed as a tuple (e.g. tuple[u(float, "meter"), u(float, "second"))).

It is not fully guaranteed as a feature, but relative units as given on this page can be also used.

Interpreters can distinguish between annotated arguments and non-anotated arguments. If the argument is annotated, the interpreter will try to convert the argument to the expected type. If the argument is not annotated, the interpreter will pass the argument as is.

Regardless of whether type hints are provided, the interpreter acts only when the input values contain units and ontological types. If the input values do not contain units and ontological types, the interpreter will pass the input values to the function as is.

License

This project is licensed under the BSD 3-Clause License - see the LICENSE file for details.

Copyright (c) 2024, Max-Planck-Institut für Nachhaltige Materialien GmbH - Computational Materials Design (CM) Department

About

Provide type hinting and interpreters for scientific context on node inputs and outputs

Resources

License

Code of conduct

Stars

Watchers

Forks

Contributors 6