Let's take a look at the following function:
def get_speed(distance: float, time: float) -> float:
return distance / time
For you as a human, it is clear that this is a function to calculate the speed for a given distance and a time. But for a computer, it is just a function that takes two floats and returns a float. The computer does not know what the inputs and outputs mean. This is where semantikon
comes in. It provides a way to give scientific context to the inputs and outputs, as well as to the function itself.
You can install semantikon
via pip
:
pip install semantikon
You can also install semantikon
via conda
:
conda install -c conda-forge semantikon
In the realm of the workflow management systems, there are well defined inputs and outputs for each node. semantikon
is a Python package to give scientific context to node inputs and outputs by providing type hinting and interpreters. Therefore, it consists of two fully separate parts: type hinting and interpreters.
semantikon
provides a way to define types for any number of input parameters and any number of output values for function via type hinting, in particular: data type, unit and ontological type. Type hinting is done with the function u
, which requires the type, and optionally you can define the units and the ontological type. The type hinting is done in the following way:
>>> from semantikon.metadata import u
>>> from rdflib import Namespace
>>>
>>> EX = Namespace("http://example.org/")
>>>
>>> def get_speed(
... distance: u(float, units="meter", uri=EX.distance),
... time: u(float, units="second", uri=EX.time),
... ) -> u(float, units="meter/second", label="speed", uri=EX.speed):
... return distance / time
semantikon
's type hinting does not require to follow any particular standard. It only needs to be compatible with the interpreter applied (s. below).
You can also type-hint the inputs and outputs of a function using a class, i.e.:
>>> from semantikon.metadata import u
>>> from semantikon.converter import semantikon_class
>>> from rdflib import Namespace
>>>
>>> EX = Namespace("http://example.org/")
>>>
>>> @semantikon_class
... class MyRecord:
... distance: u(float, units="meter", uri=EX.distance)
... time: u(float, units="second", uri=EX.time)
... result: u(float, units="meter/second", label="speed", uri=EX.speed)
>>>
>>> def get_speed(distance: MyRecord.distance, time: MyRecord.time) -> MyRecord.result:
... return distance / time
This is equivalent to the previous example. Moreover, if you need to modify some parameters, you can use u
again, e.g. u(MyRecord.distance, units="kilometer")
.
Interpreters are wrappers or decorators that inspect and process type-hinted metadata at runtime.
In order to extract argument information, you can use the functions parse_input_args
and parse_output_args
. parse_input_args
parses the input variables and return a dictionary with the variable names as keys and the variable information as values. parse_output_args
parses the output variables and returns a dictionary with the variable information if there is a single output variable, or a list of dictionaries if it is a tuple.
Example:
>>> from semantikon.metadata import u
>>> from semantikon.converter import parse_input_args, parse_output_args
>>> from rdflib import Namespace
>>>
>>> EX = Namespace("http://example.org/")
>>>
>>> def get_speed(
... a: u(float, units="meter", uri=EX.distance),
... b: u(float, units="second", uri=EX.time),
... ) -> u(float, units="meter/second", label="speed", uri=EX.speed):
... return a / b
>>>
>>> print(dict(sorted({k: dict(sorted(v.items())) for k, v in parse_input_args(get_speed).items()}.items())))
{'a': {'dtype': <class 'float'>, 'units': 'meter', 'uri': rdflib.term.URIRef('http://example.org/distance')}, 'b': {'dtype': <class 'float'>, 'units': 'second', 'uri': rdflib.term.URIRef('http://example.org/time')}}
>>> print(dict(sorted(parse_output_args(get_speed).items())))
{'dtype': <class 'float'>, 'label': 'speed', 'units': 'meter/second', 'uri': rdflib.term.URIRef('http://example.org/speed')}
semantikon
provides a way to interpret the types of inputs and outputs of a function via a decorator, in order to check consistency of the types and to convert them if necessary. Currently, semantikon
provides an interpreter for pint.UnitRegistry
objects. The interpreter is applied in the following way:
>>> from semantikon.metadata import u
>>> from semantikon.converter import units
>>> from pint import UnitRegistry
>>>
>>> @units
... def get_speed(
... a: u(float, units="meter"),
... b: u(float, units="second")
... ) -> u(float, units="meter/second", label="speed"):
... return a / b
>>>
>>> ureg = UnitRegistry()
>>>
>>> print(get_speed(1 * ureg.meter, 1 * ureg.second))
1.0 meter / second
The interpreters check all types and, if necessary, convert them to the expected types before the function is executed, in order for all possible errors would be raised before the function execution. The interpreters convert the types in the way that the underlying function would receive the raw values.
In case there are multiple outputs, the type hints are to be passed as a tuple (e.g. tuple[u(float, "meter"), u(float, "second"))
).
It is not fully guaranteed as a feature, but relative units as given on this page can be also used.
Interpreters can distinguish between annotated arguments and non-anotated arguments. If the argument is annotated, the interpreter will try to convert the argument to the expected type. If the argument is not annotated, the interpreter will pass the argument as is.
Regardless of whether type hints are provided, the interpreter acts only when the input values contain units and ontological types. If the input values do not contain units and ontological types, the interpreter will pass the input values to the function as is.
This project is licensed under the BSD 3-Clause License - see the LICENSE file for details.
Copyright (c) 2024, Max-Planck-Institut für Nachhaltige Materialien GmbH - Computational Materials Design (CM) Department