-
Notifications
You must be signed in to change notification settings - Fork 250
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Added "Importing Final Variables" section #1937
base: main
Are you sure you want to change the base?
Conversation
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This looks good to me. Should we also add the examples here as conformance tests?
I was planning to add the conformance tests as a separate PR if/when this is approved. I'll wait the required week for additional community input before I formally submit it for consideration by the full TC. |
Are the examples given in this PR intended to be exhaustive? If not, it’s not clear to me what kinds of code would erase the final qualifier. What about |
That doesn't involve an "import of a Final variable by name or wildcard", so it doesn't match the situation described in the proposed text. This is simply a usage of a final — in the RHS of an assignment statement. If you think that's not clear from the current wording, let me know if you can think of a better way to phrase it. |
I think it would help to specify an |
## Summary * Attributes/method are now properly looked up on metaclasses, when called on class objects * We properly distinguish between data descriptors and non-data descriptors (but we do not yet support them in store-context, i.e. `obj.data_descr = …`) * The descriptor protocol is now implemented in a single unified place for instances, classes and dunder-calls. Unions and possibly-unbound symbols are supported in all possible stages of the process by creating union types as results. * In general, the handling of "possibly-unbound" symbols has been improved in a lot of places: meta-class attributes, attributes, descriptors with possibly-unbound `__get__` methods, instance attributes, … * We keep track of type qualifiers in a lot more places. I anticipate that this will be useful if we import e.g. `Final` symbols from other modules (see relevant change to typing spec: python/typing#1937). * Detection and special-casing of the `typing.Protocol` special form in order to avoid lots of changes in the test suite due to new `@Todo` types when looking up attributes on builtin types which have `Protocol` in their MRO. We previously looked up attributes in a wrong way, which is why this didn't come up before. closes #16367 closes #15966 ## Context The way attribute lookup in `Type::member` worked before was simply wrong (mostly my own fault). The whole instance-attribute lookup should probably never have been integrated into `Type::member`. And the `Type::static_member` function that I introduced in my last descriptor PR was the wrong abstraction. It's kind of fascinating how far this approach took us, but I am pretty confident that the new approach proposed here is what we need to model this correctly. There are three key pieces that are required to implement attribute lookups: - **`Type::class_member`**/**`Type::find_in_mro`**: The `Type::find_in_mro` method that can look up attributes on class bodies (and corresponding bases). This is a partial function on types, as it can not be called on instance types like`Type::Instance(…)` or `Type::IntLiteral(…)`. For this reason, we usually call it through `Type::class_member`, which is essentially just `type.to_meta_type().find_in_mro(…)` plus union/intersection handling. - **`Type::instance_member`**: This new function is basically the type-level equivalent to `obj.__dict__[name]` when called on `Type::Instance(…)`. We use this to discover instance attributes such as those that we see as declarations on class bodies or as (annotated) assignments to `self.attr` in methods of a class. - The implementation of the descriptor protocol. It works slightly different for instances and for class objects, but it can be described by the general framework: - Call `type.class_member("attribute")` to look up "attribute" in the MRO of the meta type of `type`. Call the resulting `Symbol` `meta_attr` (even if it's unbound). - Use `meta_attr.class_member("__get__")` to look up `__get__` on the *meta type* of `meta_attr`. Call it with `__get__(meta_attr, self, self.to_meta_type())`. If this fails (either the lookup or the call), just proceed with `meta_attr`. Otherwise, replace `meta_attr` in the following with the return type of `__get__`. In this step, we also probe if a `__set__` or `__delete__` method exists and store it in `meta_attr_kind` (can be either "data descriptor" or "normal attribute or non-data descriptor"). - Compute a `fallback` type. - For instances, we use `self.instance_member("attribute")` - For class objects, we use `class_attr = self.find_in_mro("attribute")`, and then try to invoke the descriptor protocol on `class_attr`, i.e. we look up `__get__` on the meta type of `class_attr` and call it with `__get__(class_attr, None, self)`. This additional invocation of the descriptor protocol on the fallback type is one major asymmetry in the otherwise universal descriptor protocol implementation. - Finally, we look at `meta_attr`, `meta_attr_kind` and `fallback`, and handle various cases of (possible) unboundness of these symbols. - If `meta_attr` is bound and a data descriptor, just return `meta_attr` - If `meta_attr` is not a data descriptor, and `fallback` is bound, just return `fallback` - If `meta_attr` is not a data descriptor, and `fallback` is unbound, return `meta_attr` - Return unions of these three possibilities for partially-bound symbols. This allows us to handle class objects and instances within the same framework. There is a minor additional detail where for instances, we do not allow the fallback type (the instance attribute) to completely shadow the non-data descriptor. We do this because we (currently) don't want to pretend that we can statically infer that an instance attribute is always set. Dunder method calls can also be embedded into this framework. The only thing that changes is that *there is no fallback type*. If a dunder method is called on an instance, we do not fall back to instance variables. If a dunder method is called on a class object, we only look it up on the meta class, never on the class itself. ## Test Plan New Markdown tests.
For details, refer to this discussion.