Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
This project contains the training code of ParetoQ introduced in: "ParetoQ: Scaling Laws in Extremely Low-bit LLM Quantization" (https://arxiv.org/abs/2502.02631). All code is written by @liuzechun and @zxdmike and migrated from
https://github.com/facebookresearch/ParetoQ.
ParetoQ is the first unified framework that facilitates rigorous comparisons across 1-bit, 1.58-bit, 2-bit, 3-bit, and 4-bit quantization settings. By optimizing training schemes and refining quantization functions, ParetoQ surpasses all previous methods tailored to specific bit widths. Specifically, the 1.58-bit ParetoQ LLaMA-3 8B model reduces the performance gap to full precision by relatively 37.8% compared to the 1-bit Era’s 1.58-bit LLaMA-3 8B model, while using only 30% of the training tokens.