Skip to content

Commit

Permalink
Changelog updates for botorch 0.6.5 (#1298)
Browse files Browse the repository at this point in the history
Summary:
Pull Request resolved: #1298

Changelog for 0.6.5

Reviewed By: saitcakmak

Differential Revision: D37797684

fbshipit-source-id: c3cc22c09af19dca1879308517bd47cc10b6cb94
  • Loading branch information
esantorella authored and facebook-github-bot committed Jul 15, 2022
1 parent 1df025c commit afbfa7b
Showing 1 changed file with 47 additions and 0 deletions.
47 changes: 47 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,53 @@

The release log for BoTorch.

## [0.6.5] - Jul 15, 2022

#### Compatibility
* Require PyTorch >=1.10 (#1293).
* Require GPyTorch >=1.7 (#1293).

#### New Features
* Add MOMF (Multi-Objective Multi-Fidelity) acquisition function (#1153).
* Support `PairwiseLogitLikelihood` and modularize `PairwiseGP` (#1193).
* Add in transformed weighting flag to Proximal Acquisition function (#1194).
* Add `FeasibilityWeightedMCMultiOutputObjective` (#1202).
* Add outcome_transform to `FixedNoiseMultiTaskGP` (#1255).
* Support Scalable Constrained Bayesian Optimization (#1257).
* Support `SaasFullyBayesianSingleTaskGP` in `prune_inferior_points` (#1260).
* Add MARS tutorial (#1305).

#### Other Changes
* Add `Bilog` outcome transform (#1189).
* Make `get_infeasible_cost` return a cost value for each outcome (#1191).
* Modify risk measures to accept `List[float]` for weights (#1197).
* Support `SaasFullyBayesianSingleTaskGP` in prune_inferior_points_multi_objective (#1204).
* BotorchContainers and BotorchDatasets: Large refactor of the original `TrainingData` API to allow for more diverse types of datasets (#1205, #1221).
* Proximal biasing support for multi-output `SingleTaskGP` models (#1212).
* Improve error handling in `optimize_acqf_discrete` with a check that `choices` is non-empty (#1228).
* Handle `X_pending` properly in `FixedFeatureAcquisition` (#1233, #1234).
* PE and PLBO support in Ax (#1240, #1241).
* Remove `model.train` call from `get_X_baseline` for better caching (#1289).

#### Bug Fixes
* Update `get_gp_samples` to support input / outcome transforms (#1201).
* Make `task_feature` as required input in `MultiTaskGP.construct_inputs` (#1246).
* Fix CUDA tests (#1253).
* Fix `FixedSingleSampleModel` dtype/device conversion (#1254).
* Prevent inappropriate transforms by putting input transforms into train mode before converting models (#1283).
* Fix `sample_points_around_best` when using 20 dimensional inputs or `prob_perturb` (#1290).
* Skip bound validation in `optimize_acqf` if inequality constraints are specified (#1297).

#### Documentation
* Add a note about observation noise in the posterior in `fit_model_with_torch_optimizer` notebook (#1196).
* Fix custom botorch model in Ax tutorial to support new interface (#1213).
* Update MOO docs (#1242).
* Add SMOKE_TEST option to MOMF tutorial (#1243).
* Fix `ModelListGP.condition_on_observations`/`fantasize` bug (#1250).
* Replace space with underscore for proper doc generation (#1256).
* Update PBO tutorial to use EUBO (#1262).


## [0.6.4] - Apr 21, 2022

#### New Features
Expand Down

0 comments on commit afbfa7b

Please sign in to comment.