Enable sdpa backends for server export in export.py #2852
Workflow file for this run
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: Run parallel prefill | |
on: | |
pull_request: | |
push: | |
branches: | |
- main | |
workflow_dispatch: | |
jobs: | |
test-cuda: | |
permissions: | |
id-token: write | |
contents: read | |
uses: pytorch/test-infra/.github/workflows/linux_job_v2.yml@main | |
with: | |
runner: linux.g5.4xlarge.nvidia.gpu | |
gpu-arch-type: cuda | |
gpu-arch-version: "12.4" | |
timeout: 60 | |
script: | | |
set -xeou pipefail | |
echo "::group::Print machine info" | |
uname -a | |
echo "::endgroup::" | |
echo "::group::Download checkpoints" | |
# Install requirements | |
./install/install_requirements.sh cuda | |
pip3 list | |
python3 -c 'import torch;print(f"torch: {torch.__version__, torch.version.git_version}")' | |
echo "::endgroup::" | |
echo "::group::Download checkpoints" | |
mkdir -p checkpoints/stories15M | |
pushd checkpoints/stories15M | |
wget https://huggingface.co/karpathy/tinyllamas/resolve/main/stories15M.pt | |
wget https://github.com/karpathy/llama2.c/raw/master/tokenizer.model | |
popd | |
echo "::endgroup::" | |
echo "::group::Run inference" | |
export MODEL_DIR=checkpoints/stories15M/ | |
export MODEL_PATH=${MODEL_DIR}/stories15M.pt | |
export MODEL_NAME=stories15M | |
for DTYPE in bfloat16 float16 float32; do | |
################################################################### | |
# group with different temperatures | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 0 | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 0.9 | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 1.0 | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 100 | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 200 | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 500 | |
################################################################### | |
# group with different temperatures and prefill, and compile | |
# and prefill compile | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 0 --compile --compile-prefill | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 0.9 --compile --compile-prefill | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 1.0 --compile --compile-prefill | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 100 --compile --compile-prefill | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 200 --compile --compile-prefill | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 500 --compile --compile-prefill | |
################################################################### | |
# group with different temperatures and sequential prefill | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 0 --sequential-prefill | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 0.9 --sequential-prefill | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 1.0 --sequential-prefill | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 100 --sequential-prefill | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 200 --sequential-prefill | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 500 --sequential-prefill | |
################################################################### | |
# group with different temperatures and prefill, and compile | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 0 --sequential-prefill --compile | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 0.9 --sequential-prefill --compile | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 1.0 --sequential-prefill --compile | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 100 --sequential-prefill --compile | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 200 --sequential-prefill --compile | |
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 500 --sequential-prefill --compile | |
done | |
echo "tests complete" | |
echo "******************************************" | |
echo "::endgroup::" | |
test-sdpa-backends-export: | |
permissions: | |
id-token: write | |
contents: read | |
uses: pytorch/test-infra/.github/workflows/linux_job_v2.yml@main | |
with: | |
runner: linux.g5.4xlarge.nvidia.gpu | |
gpu-arch-type: cuda | |
gpu-arch-version: "12.4" | |
timeout: 60 | |
script: | | |
set -xeou pipefail | |
echo "::group::Print machine info" | |
uname -a | |
echo "::endgroup::" | |
echo "::group::Download checkpoints" | |
# Install requirements | |
./install/install_requirements.sh cuda | |
pip3 list | |
python3 -c 'import torch;print(f"torch: {torch.__version__, torch.version.git_version}")' | |
echo "::endgroup::" | |
echo "::group::Download checkpoints" | |
mkdir -p checkpoints/stories15M | |
pushd checkpoints/stories15M | |
wget https://huggingface.co/karpathy/tinyllamas/resolve/main/stories15M.pt | |
wget https://github.com/karpathy/llama2.c/raw/master/tokenizer.model | |
popd | |
echo "::endgroup::" | |
echo "::group::Run inference" | |
export MODEL_DIR=checkpoints/stories15M/ | |
export MODEL_PATH=${MODEL_DIR}/stories15M.pt | |
export MODEL_NAME=stories15M | |
./torchchat/utils/scripts/build_native.sh aoti | |
for DEVICE in cpu cuda; do | |
# depending on how the parameter passing works, may only be able to do bfloat16 for aoti_run, similar to runner-cuda-dtype.yml | |
# (although the runner environment should not have an opinion what we us in the artifact, and we might suitably abstract that) | |
for DTYPE in bfloat16 float16 float32; do | |
for SDPA in 'math' 'flash_attention' 'efficient_attention' 'cudnn_attention'; do | |
echo "***************************************************************" | |
echo "*** $DEVICE $DTYPE $SDPA" | |
################################################################### | |
# Export DSO and run with Python | |
python torchchat.py export --output-dso dso.so --checkpoint-path ${MODEL_PATH} --attention-backend ${SDPA} --device ${DEVICE} --dtype ${DTYPE} | |
python torchchat.py generate --dso-path dso.so --checkpoint-path ${MODEL_PATH} --attention-backend ${SDPA} --device ${DEVICE} --dtype ${DTYPE} --temperature 0 --prompt "Once upon a time" | |
################################################################### | |
# Export AOTI and run with aoti_run | |
python torchchat.py export --output-aoti /tmp/model.pt2 --checkpoint-path ${MODEL_PATH} --attention-backend ${SDPA} --device ${DEVICE} --dtype ${DTYPE} | |
./cmake-out/aoti_run /tmp/model.pt2 -z ${MODEL_DIR}/tokenizer.model -i "Once upon a time" | |
################################################################### | |
done | |
done | |
done | |
echo "tests complete" | |
echo "******************************************" | |
echo "::endgroup::" |