Skip to content

Production-ready Flask app with Docker, Kubernetes, Helm, Prometheus, and DevOps best practices.

Notifications You must be signed in to change notification settings

r21gh/devops-assignment

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

15 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

DevOps Flask Application Deployment CI Pipeline Security Scan with Trivy

This project demonstrates a production-ready Flask application deployment using modern DevOps practices. The solution uses Minikube for local development but is designed to be cloud-native and extensible for AWS production deployments.

How It Works

Application Structure

graph TB
    subgraph "Application Layer"
        FA[Flask App]
        HC[Health Check]
        MT[Metrics]
        LG[Logging]
    end

    subgraph "Container Layer"
        DK[Docker]
        FA --> DK
        HC --> DK
        MT --> DK
        LG --> DK
    end

    subgraph "Orchestration Layer"
        KS[Kubernetes]
        HM[Helm]
        DK --> KS
        HM --> KS
    end

    subgraph "Infrastructure Layer"
        TF[Terraform]
        TF --> KS
    end

    subgraph "Monitoring Layer"
        PR[Prometheus]
        GF[Grafana]
        MT --> PR
        PR --> GF
    end
Loading

Component Breakdown

  1. Flask Application

    • Simple web application with health endpoints
    • Metrics endpoint for Prometheus
    • Configurable via environment variables
    • Logging middleware for request tracking
  2. Docker Container

    • Multi-stage build for optimization
    • Non-root user for security
    • Health check configuration
    • Environment variable support
    • Images pushed to docker.io registry
    • Secure authentication using GitHub secrets for Docker Hub login
  3. Kubernetes Resources

    • Deployment for pod management
    • Service for network access
    • ConfigMap for configuration
    • Secrets for sensitive data
  4. Helm Charts

    • Templated Kubernetes manifests
    • Environment-specific values
    • Dependency management
    • Release versioning

Deployment Process

1. Local Development

# Start Minikube
minikube start

# Enable required addons
minikube addons enable ingress
minikube addons enable metrics-server

# Build and deploy application
task setup                  # Install required tools
task docker:build          # Build Docker image
# Docker login is handled securely through CI/CD secrets
task docker:push           # Push image to docker.io using configured credentials
task deploy ENV=dev        # Deploy to dev environment

# Install monitoring stack
task monitoring:install ENV=dev

2. Verify Deployment

Check Application Status

# Verify pods are running
kubectl get pods -n dev

# Check application logs
kubectl logs -n dev -l app=flask-app

# Test application endpoint
minikube service flask-app -n dev

Verify Monitoring

# Check monitoring stack
task monitoring:status ENV=dev

# Access Grafana
minikube service prometheus-grafana -n monitoring-dev

# Access Prometheus
minikube service prometheus-kube-prometheus-prometheus -n monitoring-dev

3. Common Operations

# View application logs
task logs ENV=dev

# Scale application
kubectl scale deployment -n dev flask-app --replicas=3

# Update configuration
task deploy ENV=dev        # After changing values.yaml

# Clean up resources
task clean ENV=dev

4. Health Checks

The application provides several endpoints for health monitoring:

/health/live      # Liveness probe
/health/ready     # Readiness probe
/metrics          # Prometheus metrics

5. Configuration

Application configuration is managed through:

  1. Environment Variables:
LOG_LEVEL: INFO
APP_PORT: 8080
API_BASE_URL: http://api.local
  1. Helm Values (values.yaml):
replicaCount: 2
resources:
  limits:
    cpu: 200m
    memory: 256Mi
  requests:
    cpu: 100m
    memory: 128Mi

Docker Authentication and Secrets Management

Docker Registry Authentication

The application uses secure Docker registry authentication through multiple methods:

  1. GitHub Actions CI/CD:

    • Authentication to GitHub Container Registry (GHCR) is handled automatically using GITHUB_TOKEN
    • Configured in .github/workflows/ci.yaml using docker/login-action@v3
  2. Local Development:

    • For local development, use task docker:login which will prompt for secure credential input
    • Credentials are not stored in plain text in any configuration files
  3. Kubernetes Deployment:

    • Image pull secrets are configured in the Helm charts
    • Secrets are managed through helm-charts/values.yaml and helm-charts/templates/secrets.yaml
    • For production deployments, use proper secrets management solutions like HashiCorp Vault or AWS Secrets Manager

Security Best Practices

  • Never commit Docker credentials to version control
  • Use environment variables or secure secrets management for storing credentials
  • Regularly rotate Docker access tokens
  • Use least-privilege access principles when configuring registry permissions

Deployment Verification Checklist

βœ… Application Health

  • Pods are running and ready
  • Health check endpoints responding
  • Logs show no errors
  • Metrics being collected

βœ… Infrastructure

  • Kubernetes resources created
  • Services accessible
  • Monitoring stack operational
  • Resource limits applied

βœ… Security

  • RBAC policies applied
  • Secrets properly managed
  • Network policies active
  • Container running as non-root

βœ… Monitoring

  • Prometheus targets discovered
  • Grafana dashboards loaded
  • Alerts configured
  • Logs being collected

Troubleshooting Guide

Common Issues

  1. Pods Not Starting
# Check pod status
kubectl describe pod -n dev <pod-name>

# Check logs
kubectl logs -n dev <pod-name>
  1. Service Not Accessible
# Verify service
kubectl get svc -n dev

# Check endpoints
kubectl get endpoints -n dev

# Test using port-forward
kubectl port-forward -n dev svc/flask-app 8080:8080
  1. Monitoring Issues
# Check Prometheus targets
kubectl port-forward -n monitoring-dev svc/prometheus-kube-prometheus-prometheus 9090:9090
# Visit http://localhost:9090/targets

# Check Grafana dashboards
task monitoring:status ENV=dev

Debug Commands

# Get all resources in namespace
kubectl get all -n dev

# Check pod events
kubectl get events -n dev --sort-by='.lastTimestamp'

# View container logs
kubectl logs -n dev -l app=flask-app --tail=100 -f

# Check resource usage
kubectl top pods -n dev

πŸ’‘ Improvements & Automation Opportunities with Magnetic AI

Layer Improvements Magnetic AI Can Bring
Input Processing Natural language deployment triggers: e.g. "Deploy staging with new env vars."
Task Classification Auto-categorize based on code diff: Terraform vs Helm vs App code
Planning Auto-detect impacted services/namespaces & generate safe execution plans
Reasoning & Analysis Analyze terraform plan, helm diff, and predict risk levels or rollback needs
Decision Making Use context-aware rules/LLMs to auto-approve safe deploys, escalate risky ones
Task Execution Run tasks through Taskfile, CI/CD tools, Kubernetes API, or CLI
Feedback & Debugging Parse logs/errors, correlate Helm/K8s failure to likely config/code issues
Action Adjustment Auto-patch known chart bugs, suggest fixes to Helm values or Terraform variables
Response Generation Summarize actions and impact in human-readable format with links to resources
Quality Control Run e2e tests, smoke tests, and synthetic monitoring post-deploy
Final Output Output detailed release notes, tag successful commits, update dashboards

alt text

graph LR
    subgraph "Input Processing"
        IT[Input Trigger e.g. Git Push, Merge Request] --> PP[Prompt Processing e.g. DevOps Prompt via CLI or API]
        PP --> TC[Task Classification e.g. Plan Infra, Deploy App, Rollback]
    end

    subgraph "Cognitive Layer"
        TC --> PL[Planning e.g. Select Env, Detect Change Scope]
        PL --> RA[Reasoning & Analysis e.g. Validate Terraform Plan, Helm Diff]
        RA --> DM[Decision Making e.g. Auto-approve or Wait for Human]
    end

    subgraph "Action Layer"
        DM --> TE[Task Execution e.g. Run Terraform, Helm Upgrade]
        TE --> FD[Feedback & Debugging e.g. Logs, Errors, Metrics]
        FD --> AA[Action Adjustment e.g. Auto-Fix Chart Values, Retry Deployment]
    end

    subgraph "Output Layer"
        AA --> RG[Response Generation e.g. Notify Slack, Create PR Comment]
        RG --> QC[Quality Control e.g. Confirm Deployment Success, Run Tests]
        QC --> FO[Final Output e.g. Success Tag, Release Note]
    end

    style IT fill:#f9f,stroke:#333,stroke-width:2px
    style FO fill:#9ff,stroke:#333,stroke-width:2px
    style PL fill:#ff9,stroke:#333,stroke-width:2px
    style RA fill:#ff9,stroke:#333,stroke-width:2px
    style DM fill:#ff9,stroke:#333,stroke-width:2px

Loading

Design Decisions and Implementation Choices

1. Technology Stack Choices

Container Orchestration (Kubernetes)

  • Why: Scalability, self-healing, declarative configuration
  • Trade-offs:
    • βœ… Production-grade orchestration
    • βœ… Cloud-native compatibility
    • ❌ Higher complexity
    • ❌ Steeper learning curve

Infrastructure as Code (Terraform)

  • Why: Reproducible infrastructure, state management
  • Trade-offs:
    • βœ… Provider-agnostic
    • βœ… State tracking
    • ❌ Additional abstraction layer
    • ❌ State management overhead

Package Management (Helm)

  • Why: Kubernetes package management, templating
  • Trade-offs:
    • βœ… Versioned deployments
    • βœ… Environment-specific configs
    • ❌ Additional complexity
    • ❌ Template debugging challenges

2. Implementation Strategies

Development Workflow

graph LR
    A[Local Dev] --> B[Minikube]
    B --> C[Testing]
    C --> D[CI/CD]
    D --> E[Production]
Loading
  1. Local Development

    • Minikube for local K8s cluster
    • Task for command automation
    • Hot reload for development
    • Local image registry
  2. Testing Strategy

    • Unit tests in CI pipeline
    • Integration tests in Minikube
    • End-to-end tests in staging
    • Performance tests before production
  3. Deployment Strategy

    • Rolling updates for zero downtime
    • Canary deployments for risk mitigation
    • Automated rollbacks
    • Multi-environment promotion

3. Security Considerations

graph TB
    subgraph "Security Layers"
        A[Network Security] --> B[VPC/Subnets]
        C[Access Control] --> D[RBAC/IAM]
        E[Secret Management] --> F[K8s Secrets]
        G[Container Security] --> H[Security Context]
    end
Loading
  1. Network Security

    • Private subnets for workloads
    • Network policies for pod isolation
    • Ingress controllers for traffic management
    • Service mesh (optional)
  2. Access Control

    • RBAC for Kubernetes resources
    • IAM for AWS services
    • Service accounts for pod identity
    • Least privilege principle
  3. Data Security

    • Encrypted storage
    • Secrets management
    • TLS for in-transit encryption
    • Regular security scanning

4. Scalability Approach

graph LR
    A[Application] --> B[HPA]
    B --> C[Node Autoscaling]
    C --> D[Cluster Autoscaling]
Loading
  1. Application Level

    • Horizontal Pod Autoscaling
    • Resource requests/limits
    • Load balancing
    • Cache strategies
  2. Infrastructure Level

    • Node autoscaling
    • Multi-AZ deployment
    • Region replication (optional)
    • Database scaling

5. Monitoring and Observability

  1. Metrics Collection

    • Application metrics
    • System metrics
    • Business metrics
    • Custom metrics
  2. Alerting Strategy

    • Critical alerts
    • Warning alerts
    • Business alerts
    • Escalation policies

6. Cost Optimization

  1. Resource Management

    • Right-sized resources
    • Spot instances where applicable
    • Autoscaling policies
    • Cost monitoring
  2. Storage Optimization

    • Storage class selection
    • Backup retention policies
    • Log rotation
    • Archive strategies

7. Future Considerations

  1. Scalability

    • Multi-region deployment
    • Global load balancing
    • Data replication
    • Edge caching
  2. Reliability

    • Chaos engineering
    • Disaster recovery
    • Backup automation
    • SLA monitoring
  3. Security

    • Zero trust architecture
    • Service mesh
    • Security automation
    • Compliance automation

These design decisions and implementation choices were made to create a solution that is:

  • πŸš€ Scalable and performant
  • πŸ”’ Secure and compliant
  • πŸ’» Developer-friendly
  • πŸ“Š Observable and maintainable
  • πŸ’° Cost-effective
  • πŸ”„ Automated and efficient

System Reliability Characteristics

Architecture Overview

graph TB
    subgraph "System Characteristics"
        SC1[Scalability]
        SC2[Availability]
        SC3[Security]
        SC4[Fault Tolerance]
    end

    subgraph "Implementation Layers"
        L1[Infrastructure]
        L2[Application]
        L3[Data]
        L4[Network]
    end

    SC1 --> L1 & L2 & L3 & L4
    SC2 --> L1 & L2 & L3 & L4
    SC3 --> L1 & L2 & L3 & L4
    SC4 --> L1 & L2 & L3 & L4
Loading

1. Scalability Implementation

Infrastructure Scalability

Kubernetes Cluster: Node Autoscaling: - Minimum: 3 nodes - Maximum: 10 nodes - Scale Triggers: - CPU utilization > 70% - Memory utilization > 80%

Pod Autoscaling: - Minimum: 2 replicas - Maximum: 10 replicas - Metrics: - CPU utilization - Custom metrics - Request rate

Application Scalability

Horizontal Pod Autoscaling: Deployment: - Rolling updates - Zero-downtime scaling - Resource quotas

Load Balancing: - Service mesh routing - Session affinity - Connection draining

Data Layer Scalability

Database:

  • Read replicas
  • Connection pooling
  • Query optimization
  • Caching strategy

Cache:

  • Distributed caching
  • Cache invalidation
  • TTL policies

2. High Availability Design

Multi-AZ Architecture

graph LR
    subgraph "AZ-1"
        N1[Node Pool 1]
        P1[Pod Set 1]
        D1[Data Store 1]
    end

    subgraph "AZ-2"
        N2[Node Pool 2]
        P2[Pod Set 2]
        D2[Data Store 2]
    end

    subgraph "AZ-3"
        N3[Node Pool 3]
        P3[Pod Set 3]
        D3[Data Store 3]
    end

    LB[Load Balancer] --> N1 & N2 & N3
Loading

Redundancy Implementation

Components: Control Plane: - Multi-master setup - Etcd cluster (3+ nodes) - Backup control plane

Data Layer: - Primary-secondary replication - Automated failover - Backup strategy

Network: - Redundant load balancers - Multiple ingress controllers - Cross-AZ connectivity

3. Security Architecture

Defense in Depth Strategy

graph TB
    subgraph "Security Layers"
        L1[Edge Security]
        L2[Network Security]
        L3[Application Security]
        L4[Data Security]
        L5[Identity Security]
    end

    L1 --> L2 --> L3 --> L4 --> L5
Loading

Implementation Details

Edge Security:

  • WAF rules
  • DDoS protection
  • TLS termination
  • Rate limiting

Network Security:

  • Network policies
  • Security groups
  • Traffic encryption
  • Segmentation

Application Security:

  • Pod security policies
  • RBAC
  • Secret management
  • Container scanning

Data Security:

  • Encryption at rest
  • Encryption in transit
  • Key rotation
  • Access auditing

4. Fault Tolerance Mechanisms

Failure Detection and Recovery

Health Checks: Liveness Probe: - HTTP endpoint check - TCP socket check - Command execution

Readiness Probe: - Service dependency check - Resource availability - Database connectivity

Circuit Breakers:

  • Connection pooling
  • Timeout configuration
  • Retry policies
  • Fallback mechanisms

Resilience Patterns

Implementation:

  • Retry with exponential backoff
  • Circuit breaker pattern
  • Bulkhead pattern
  • Fallback strategies
  • Graceful degradation

5. Monitoring and Alerting

Metrics Collection

System Metrics:

  • Node health
  • Pod status
  • Resource utilization
  • Network performance

Application Metrics:

  • Response times
  • Error rates
  • Request volumes
  • Business metrics

Custom Metrics:

  • SLI measurements
  • Business KPIs
  • User experience

Alert Configuration

Alerting Rules: Infrastructure: - Node availability < 80% - Pod restart count > 5 - CPU utilization > 85% - Memory usage > 90%

Application: - Error rate > 1% - P95 latency > 500ms - Success rate < 99.9% - Concurrent users > threshold

6. Disaster Recovery

Backup Strategy

Components: Etcd: - Scheduled snapshots - Cross-region replication - Retention policy

Application Data: - Regular backups - Point-in-time recovery - Geographic redundancy

Configuration: - GitOps versioning - Infrastructure as Code - Secret backups

Recovery Procedures

Recovery Plans:

  • RTO: < 4 hours
  • RPO: < 15 minutes

Procedures:

  • Automated recovery scripts
  • Manual intervention points
  • Communication plan
  • Escalation path

7. Performance Optimization

Resource Management

Optimization Areas: Compute: - Right-sized containers - Efficient scheduling - Resource limits - QoS classes

Storage: - Storage class selection - Volume types - Caching layers - I/O optimization

Network: - Service mesh optimization - Network policies - Load balancing - Traffic routing

8. Implementation Best Practices

  1. Scalability:

    • Use horizontal scaling over vertical
    • Implement proper resource requests/limits
    • Enable metric-based autoscaling
    • Design for statelessness
  2. Availability:

    • Deploy across multiple AZs
    • Implement proper health checks
    • Use pod disruption budgets
    • Configure proper readiness/liveness probes
  3. Security:

    • Follow least privilege principle
    • Implement network policies
    • Regular security scanning
    • Automated secret rotation
  4. Fault Tolerance:

    • Implement circuit breakers
    • Use retry with backoff
    • Enable pod anti-affinity
    • Configure proper timeouts

This implementation ensures:

  • πŸ“ˆ Linear scalability
  • πŸ”„ High availability (99.9%+)
  • πŸ”’ Defense in depth security
  • πŸ›‘οΈ Resilience to failures
  • πŸ“Š Comprehensive monitoring
  • πŸ”§ Efficient resource usage

AWS Production Networking Strategy

Network Architecture Overview

graph TB
    subgraph "AWS Cloud"
        subgraph "VPC"
            subgraph "Public Subnets (DMZ)"
                ALB[Application Load Balancer]
                NAT[NAT Gateway]
                BAS[Bastion Host or SSM]
            end

            subgraph "Private Subnets (App Layer)"
                EKS[EKS Nodes]
                APP1[App Pods AZ1]
                APP2[App Pods AZ2]
            end

            subgraph "Private Subnets (Data Layer)"
                RDS1[RDS Primary]
                RDS2[RDS Standby]
                ELC[ElastiCache]
            end
        end

        subgraph "AWS Services"
            R53[Route 53]
            WAF[AWS WAF]
            CW[CloudWatch]
            SM[Secrets Manager]
        end
    end

    Internet((Internet)) --> WAF
    WAF --> R53
    R53 --> ALB
    ALB --> APP1 & APP2
    APP1 & APP2 --> NAT
    NAT --> Internet
    APP1 & APP2 --> RDS1
    APP1 & APP2 --> ELC
    RDS1 --> RDS2
Loading

1. VPC Design

Network Segmentation

VPC CIDR: 10.0.0.0/16

Availability Zone A:
  Public Subnet:  10.0.0.0/24
  Private App:    10.0.10.0/24
  Private Data:   10.0.20.0/24

Availability Zone B:
  Public Subnet:  10.0.1.0/24
  Private App:    10.0.11.0/24
  Private Data:   10.0.21.0/24

Availability Zone C:
  Public Subnet:  10.0.2.0/24
  Private App:    10.0.12.0/24
  Private Data:   10.0.22.0/24

2. Security Layers

  1. Edge Security

    • AWS WAF for application firewall
    • AWS Shield for DDoS protection
    • CloudFront for CDN and edge security
    • SSL/TLS termination at ALB
  2. Network Access Controls

    # Example Security Group for EKS Nodes
    resource "aws_security_group" "eks_nodes" {
      name        = "eks-nodes"
      description = "Security group for EKS nodes"
      vpc_id      = aws_vpc.main.id
    
      ingress {
        description = "Allow inbound traffic from ALB"
        from_port   = 30000
        to_port     = 32767
        protocol    = "tcp"
        security_groups = [aws_security_group.alb.id]
      }
    }

3. Load Balancing Strategy

  1. External Traffic

    • Application Load Balancer (ALB) for HTTP/HTTPS
    • AWS WAF integration
    • SSL termination
    • Access logs to S3
  2. Internal Traffic

    • Service mesh (optional)
    • Internal ALB for service-to-service
    • Network Load Balancer for TCP/UDP

4. DNS and Service Discovery

  1. External DNS

    Route 53:

    • Public hosted zone for external access
    • Health checks for endpoints
    • Failover routing policies
    • Geolocation routing (optional)
  2. Internal DNS

    CoreDNS (EKS):

    • Service discovery
    • Pod DNS resolution
    • External DNS integration

5. Network Policies

# Example Network Policy
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: app-network-policy
spec:
  podSelector:
    matchLabels:
      app: flask-app
  policyTypes:
    - Ingress
    - Egress
  ingress:
    - from:
        - namespaceSelector:
            matchLabels:
              name: monitoring
  egress:
    - to:
        - namespaceSelector:
            matchLabels:
              name: database

6. Connectivity and VPN

  1. VPN Options

    • AWS Client VPN for developer access
    • Site-to-Site VPN for hybrid cloud
    • AWS Direct Connect for dedicated connection
  2. Bastion Host

    • Hardened EC2 instance
    • Jump box for emergency access
    • Audit logging enabled

7. Monitoring and Logging

  1. Network Monitoring

    VPC Flow Logs:

    • Capture: ACCEPT/REJECT traffic
    • Destination: CloudWatch Logs
    • Retention: 30 days
  2. Performance Monitoring

    CloudWatch Metrics:

    • NetworkIn/NetworkOut
    • ConnectionCount
    • ProcessedBytes
    • HealthyHostCount

8. Cost Optimization

  1. NAT Gateway Strategy

    • One NAT Gateway per AZ
    • NAT Instance for dev/staging
    • Cost vs. availability trade-off
  2. Data Transfer

    • Regional data transfer optimization
    • CloudFront for static content
    • S3 Transfer Acceleration

Implementation Example

# VPC Configuration
module "vpc" {
  source = "terraform-aws-modules/vpc/aws"

  name = "production-vpc"
  cidr = "10.0.0.0/16"

  azs             = ["eu-west-1a", "eu-west-1b", "eu-west-1c"]
  private_subnets = ["10.0.10.0/24", "10.0.11.0/24", "10.0.12.0/24"]
  public_subnets  = ["10.0.0.0/24", "10.0.1.0/24", "10.0.2.0/24"]

  enable_nat_gateway     = true
  single_nat_gateway     = false
  one_nat_gateway_per_az = true

  enable_vpn_gateway = true

  tags = {
    Environment = "production"
    Terraform   = "true"
  }
}

This networking strategy ensures:

  • πŸ”’ Multi-layer security
  • 🌐 High availability
  • πŸ“ˆ Scalability
  • πŸ” Network visibility
  • πŸ’° Cost optimization
  • πŸš€ Performance optimization

AWS Service Access Implementation

Access Management Overview

graph TB
    subgraph "EKS Cluster"
        SA[Service Account]
        Pod[Application Pod]
        SA --> Pod
    end

    subgraph "AWS IAM"
        Role[IAM Role]
        Policy[IAM Policy]
        Role --> Policy
    end

    subgraph "AWS Services"
        S3[S3]
        SQS[SQS]
        SNS[SNS]
        RDS[RDS]
        SM[Secrets Manager]
    end

    SA --> Role
    Policy --> S3
    Policy --> SQS
    Policy --> SNS
    Policy --> RDS
    Policy --> SM
Loading

1. IRSA (IAM Roles for Service Accounts) Setup

# Enable IRSA for EKS Cluster
resource "aws_iam_openid_connect_provider" "eks" {
  url             = aws_eks_cluster.main.identity[0].oidc[0].issuer
  client_id_list  = ["sts.amazonaws.com"]
  thumbprint_list = [data.tls_certificate.eks.certificates[0].sha1_fingerprint]
}

# Create IAM Role for Service Account
resource "aws_iam_role" "app_role" {
  name = "flask-app-role"

  assume_role_policy = jsonencode({
    Version = "2012-10-17"
    Statement = [{
      Action = "sts:AssumeRoleWithWebIdentity"
      Effect = "Allow"
      Principal = {
        Federated = aws_iam_openid_connect_provider.eks.arn
      }
      Condition = {
        StringEquals = {
          "${aws_iam_openid_connect_provider.eks.url}:sub": "system:serviceaccount:${var.namespace}:${var.service_account_name}"
        }
      }
    }]
  })
}

2. Service-Specific Policies

  1. S3 Access Policy:
resource "aws_iam_role_policy" "s3_access" {
  name = "s3-access"
  role = aws_iam_role.app_role.id

  policy = jsonencode({
    Version = "2012-10-17"
    Statement = [
      {
        Effect = "Allow"
        Action = [
          "s3:GetObject",
          "s3:PutObject",
          "s3:ListBucket"
        ]
        Resource = [
          "${aws_s3_bucket.app_bucket.arn}",
          "${aws_s3_bucket.app_bucket.arn}/*"
        ]
      }
    ]
  })
}
  1. Secrets Manager Access:
resource "aws_iam_role_policy" "secrets_access" {
  name = "secrets-access"
  role = aws_iam_role.app_role.id

  policy = jsonencode({
    Version = "2012-10-17"
    Statement = [
      {
        Effect = "Allow"
        Action = [
          "secretsmanager:GetSecretValue",
          "secretsmanager:DescribeSecret"
        ]
        Resource = [
          "arn:aws:secretsmanager:${var.region}:${var.account_id}:secret:${var.environment}/*"
        ]
      }
    ]
  })
}

3. Kubernetes Service Account

apiVersion: v1
kind: ServiceAccount
metadata:
  name: flask-app
  namespace: dev
  annotations:
    eks.amazonaws.com/role-arn: arn:aws:iam::${ACCOUNT_ID}:role/flask-app-role

4. Pod Security Configuration

apiVersion: apps/v1
kind: Deployment
metadata:
  name: flask-app
spec:
  template:
    spec:
      serviceAccountName: flask-app
      securityContext:
        fsGroup: 1000
        runAsUser: 1000
        runAsNonRoot: true

5. Access Patterns

  1. Direct AWS SDK Access:
import boto3

# AWS SDK automatically uses IRSA credentials
s3_client = boto3.client('s3')
secret_client = boto3.client('secretsmanager')
  1. External Secrets Operator:
apiVersion: external-secrets.io/v1beta1
kind: ExternalSecret
metadata:
  name: app-secrets
spec:
  refreshInterval: "1h"
  secretStoreRef:
    name: aws-secrets-manager
    kind: SecretStore
  target:
    name: app-secrets
  data:
    - secretKey: DB_PASSWORD
      remoteRef:
        key: dev/flask-app/db
        property: password

6. Security Best Practices

  1. Least Privilege Access:

    • Scope down permissions to specific resources
    • Use resource tags for fine-grained control
    • Regular access review and cleanup
  2. Secret Rotation:

    resource "aws_secretsmanager_secret_rotation" "app" {
      secret_id           = aws_secretsmanager_secret.app.id
      rotation_lambda_arn = aws_lambda_function.rotation.arn
    
      rotation_rules {
        automatically_after_days = 30
      }
    }
  3. Access Monitoring:

    CloudWatch Logs:
      - API calls through CloudTrail
      - Service account token usage
      - Access denials and errors

7. Implementation Example

module "iam_assumable_role_with_oidc" {
  source  = "terraform-aws-modules/iam/aws//modules/iam-assumable-role-with-oidc"
  version = "~> 4.0"

  create_role                   = true
  role_name                     = "flask-app-${var.environment}"
  provider_url                  = replace(aws_eks_cluster.main.identity[0].oidc[0].issuer, "https://", "")
  role_policy_arns             = [aws_iam_policy.app_policy.arn]
  oidc_fully_qualified_subjects = ["system:serviceaccount:${var.namespace}:flask-app"]
}

resource "aws_iam_policy" "app_policy" {
  name        = "flask-app-policy-${var.environment}"
  description = "Policy for Flask application"

  policy = jsonencode({
    Version = "2012-10-17"
    Statement = [
      {
        Effect = "Allow"
        Action = [
          "s3:GetObject",
          "secretsmanager:GetSecretValue",
          "sqs:SendMessage",
          "sns:Publish"
        ]
        Resource = [
          aws_s3_bucket.app_bucket.arn,
          aws_secretsmanager_secret.app.arn,
          aws_sqs_queue.app_queue.arn,
          aws_sns_topic.app_topic.arn
        ]
      }
    ]
  })
}

This AWS service access implementation ensures:

  • πŸ” Secure service authentication
  • 🎯 Fine-grained access control
  • πŸ”„ Automated secret rotation
  • πŸ“ Comprehensive audit logging
  • ⚑ Efficient resource access
  • πŸ›‘οΈ Defense in depth

CI/CD Pipeline for Multi-Environment Deployments

Pipeline Architecture Overview

graph TB
    subgraph "Source"
        GIT[Git Repository]
        GIT --> |Push| PR[Pull Request]
        PR --> |Merge| MAIN[Main Branch]
    end

    subgraph "CI Pipeline"
        MAIN --> |Trigger| TEST[Unit Tests]
        TEST --> |Pass| LINT[Code Quality]
        LINT --> |Pass| SEC[Security Scan]
        SEC --> |Pass| BUILD[Build & Push]
    end

    subgraph "CD Pipeline"
        BUILD --> |Trigger| DEV[Dev Deploy]
        DEV --> |Manual| STG[Staging Deploy]
        STG --> |Manual| PROD[Production Deploy]
    end

    subgraph "Environments"
        DEV --> |Sync| DEV_ENV[Dev Environment]
        STG --> |Sync| STG_ENV[Staging Environment]
        PROD --> |Sync| PROD_ENV[Production Environment]
    end

    subgraph "Monitoring"
        DEV_ENV --> |Metrics| MON[Monitoring]
        STG_ENV --> |Metrics| MON
        PROD_ENV --> |Metrics| MON
    end
Loading

Deployment Strategy

  1. Progressive Deployment:
graph LR
    A[Dev] -->|Auto| B[Integration Tests]
    B -->|Manual| C[Staging]
    C -->|Manual| D[Production]
    D -->|Auto| E[Health Check]
Loading

Best Practices

  1. Version Control:

    • Branch protection rules
    • Required reviews
    • Automated testing
    • Version tagging
  2. Testing Strategy:

    • Unit tests before build
    • Integration tests in dev
    • Load tests in staging
    • Smoke tests in production
  3. Security Measures:

    • Scan dependencies
    • Container scanning
    • Infrastructure scanning
    • Compliance checks
  4. Documentation:

    • Automated changelog
    • Deployment history
    • Environment differences
    • Runbook automation

This CI/CD implementation ensures:

  • πŸš€ Automated deployments
  • πŸ”„ Consistent environments
  • πŸ”’ Secure pipelines
  • πŸ“Š Comprehensive monitoring
  • πŸ”§ Easy maintenance
  • ⚑ Quick rollbacks

Solution Trade-offs and Design Considerations

Architecture Trade-offs Overview

graph TB
    subgraph "Key Trade-off Areas"
        A[Complexity vs Flexibility]
        B[Cost vs Performance]
        C[Security vs Convenience]
        D[Automation vs Control]
        E[Standardization vs Customization]
    end

    subgraph "Impact Areas"
        F[Development Speed]
        G[Operational Overhead]
        H[Resource Utilization]
        I[Maintenance Effort]
        J[Learning Curve]
    end

    A --> F & G
    B --> G & H
    C --> F & I
    D --> G & J
    E --> I & J
Loading

1. Infrastructure Choices

Kubernetes vs. Traditional Deployment

πŸ‘ Benefits:

  • Container orchestration and scaling
  • Declarative configuration
  • Self-healing capabilities
  • Portable across clouds

πŸ‘Ž Drawbacks:

  • Higher operational complexity
  • Steeper learning curve
  • Resource overhead for small applications
  • Higher initial setup cost

Decision Rationale: Chose Kubernetes for long-term scalability and standardization, accepting the initial complexity overhead.

Minikube for Local Development

πŸ‘ Benefits:

  • Simplified local K8s setup
  • Matches production environment
  • Built-in addons and tools
  • Low resource requirements

πŸ‘Ž Drawbacks:

  • Limited multi-node testing
  • Performance differences from production
  • Some features not available
  • Additional tool dependencies

Decision Rationale: Selected Minikube for developer experience and environment parity, while acknowledging its limitations.

2. Monitoring Stack

Prometheus + Grafana vs. Cloud-Native Solutions

πŸ‘ Benefits:

  • Open-source and customizable
  • Rich ecosystem of exporters
  • Cloud-agnostic monitoring
  • Cost-effective at scale

πŸ‘Ž Drawbacks:

  • Self-managed infrastructure
  • Storage considerations
  • Query language learning curve
  • Alert configuration complexity

Decision Rationale: Implemented Prometheus/Grafana for flexibility and cost control, accepting the operational overhead.

3. CI/CD Implementation

GitHub Actions vs. Jenkins

πŸ‘ Benefits:

  • Tight SCM integration
  • Managed infrastructure
  • YAML-based configuration
  • Built-in secrets management

πŸ‘Ž Drawbacks:

  • Limited customization
  • Platform lock-in
  • Usage-based pricing
  • Limited local testing

Decision Rationale: Chose GitHub Actions for simplicity and integration, trading some flexibility for operational efficiency.

4. Security Approach

IRSA vs. Static Credentials

πŸ‘ Benefits:

  • Dynamic credential management
  • Fine-grained access control
  • Automated rotation
  • Audit trail

πŸ‘Ž Drawbacks:

  • Complex initial setup
  • Cloud provider specific
  • Troubleshooting complexity
  • Additional IAM overhead

Decision Rationale: Implemented IRSA for enhanced security, accepting the additional setup and maintenance complexity.

5. Configuration Management

Helm vs. Raw Kubernetes Manifests

πŸ‘ Benefits:

  • Template-based configuration
  • Version management
  • Release rollback
  • Package distribution

πŸ‘Ž Drawbacks:

  • Template debugging complexity
  • Additional abstraction layer
  • Version compatibility issues
  • Learning curve for teams

Decision Rationale: Adopted Helm for maintainable and versioned deployments, despite the additional complexity.

6. Development Workflow

Task-based vs. Direct Commands

πŸ‘ Benefits:

  • Standardized commands
  • Documentation as code
  • Cross-platform support
  • Reduced human error

πŸ‘Ž Drawbacks:

  • Additional tool dependency
  • Maintenance overhead
  • Abstraction complexity
  • Learning requirement

Decision Rationale: Implemented Task for command standardization, accepting the additional tool dependency.

7. Resource Management

Resource Limits vs. Autoscaling

πŸ‘ Benefits:

  • Predictable resource usage
  • Cost control
  • Performance boundaries
  • Cluster stability

πŸ‘Ž Drawbacks:

  • Potential resource waste
  • Manual tuning required
  • Less flexibility
  • Over-provisioning risk

Decision Rationale: Combined both approaches with conservative limits and targeted autoscaling.

8. Environment Strategy

Multiple Clusters vs. Namespaces

πŸ‘ Benefits:

  • Strong isolation
  • Independent scaling
  • Resource separation
  • Maintenance flexibility

πŸ‘Ž Drawbacks:

  • Higher infrastructure cost
  • Operational complexity
  • Resource duplication
  • Management overhead

Decision Rationale: Used namespaces for cost-efficiency in development, separate clusters for production.

Impact Analysis

  1. Development Velocity:

    Positive Impacts:

    • Standardized workflows
    • Automated deployments
    • Local environment parity

    Negative Impacts:

    • Initial setup time
    • Learning curve
    • Tool complexity
  2. Operational Overhead:

    Positive Impacts:

    • Automated management
    • Centralized monitoring
    • Standardized processes

    Negative Impacts:

    • Infrastructure maintenance
    • Multiple tools to manage
    • Debugging complexity
  3. Cost Implications:

    Positive Impacts:

    • Resource optimization
    • Scaling efficiency
    • Tool consolidation

    Negative Impacts:

    • Infrastructure costs
    • Tool licensing
    • Training requirements

Mitigation Strategies

  1. Complexity Management:

    • Comprehensive documentation
    • Automated setup scripts
    • Regular training sessions
    • Simplified local development
  2. Cost Control:

    • Resource usage monitoring
    • Automated scaling policies
    • Development environment optimization
    • Tool consolidation
  3. Security Balance:

    • Automated security processes
    • Developer-friendly tools
    • Regular security reviews
    • Clear security guidelines
  4. Maintenance Efficiency:

    • Automated updates
    • Centralized configuration
    • Monitoring automation
    • Regular health checks

These trade-offs were carefully considered to create a solution that is:

  • 🎯 Balanced for current needs
  • πŸ“ˆ Scalable for future growth
  • πŸ› οΈ Maintainable long-term
  • πŸ’° Cost-effective
  • πŸ”’ Secure by design
  • πŸ‘₯ Team-friendly

Future Enhancements and Improvements

Overview of Enhancement Areas

graph TB
    subgraph "Core Improvements"
        A[Infrastructure Optimization]
        B[Security Enhancements]
        C[Observability Improvements]
        D[Developer Experience]
        E[Automation Expansion]
    end

    subgraph "Advanced Features"
        F[Advanced Deployment]
        G[AI/ML Integration]
        H[Cost Optimization]
        I[Performance Tuning]
        J[Compliance & Governance]
    end

    A --> F
    B --> G
    C --> H
    D --> I
    E --> J
Loading

1. Infrastructure Enhancements

Multi-Region Support

Implementation:

  • Global load balancing
  • Cross-region data replication
  • Regional failover automation
  • Latency-based routing

Benefits:

  • Improved availability
  • Disaster recovery
  • Better user experience
  • Geographic compliance

Service Mesh Integration

Features:

  • Advanced traffic management
  • Service-to-service encryption
  • Detailed telemetry
  • Circuit breaking

Tools:

  • Istio/Linkerd deployment
  • Envoy proxy integration
  • mTLS implementation
  • Traffic policies

2. Security Improvements

Zero Trust Architecture

Components:

  • Identity-based access
  • Just-in-time access
  • Micro-segmentation
  • Continuous verification

Implementation:

  • Service mesh security
  • Pod identity enforcement
  • Network policy enhancement
  • Behavioral monitoring

Advanced Threat Protection

Features:

  • Runtime security monitoring
  • Automated threat response
  • Container image scanning
  • Kubernetes audit logging

Tools:

  • Falco integration
  • OPA/Gatekeeper policies
  • Aqua/Twistlock security
  • EFK stack for audit logs

3. Observability Enhancements

Distributed Tracing

Implementation:

  • OpenTelemetry integration
  • Trace sampling configuration
  • Context propagation
  • Span correlation

Components:

  • Jaeger deployment
  • Tempo integration
  • Trace visualization
  • Performance analysis

Advanced Monitoring

Features:

  • Custom metric collection
  • Business KPI tracking
  • ML-based anomaly detection
  • Automated root cause analysis

Tools:

  • Prometheus recording rules
  • Custom exporters
  • AlertManager enhancements
  • Grafana dashboards

4. Developer Experience

GitOps Enhancement

Implementation:

  • ArgoCD/Flux deployment
  • Application of Apps pattern
  • Automated sync policies
  • Drift detection

Features:

  • Self-service deployments
  • Environment promotion
  • Configuration validation
  • Rollback automation

Local Development

Improvements:

  • Development container support
  • Hot reload capabilities
  • Local service virtualization
  • Automated setup scripts

Tools:

  • DevSpace/Tilt integration
  • Telepresence for debugging
  • Skaffold automation
  • VSCode extensions

5. Performance Optimization

Caching Strategy

Implementation:

  • Multi-level caching
  • Cache warming
  • Intelligent invalidation
  • Cache analytics

Components:

  • Redis cluster
  • CDN integration
  • Browser caching
  • API caching

Resource Optimization

Features:

  • Vertical pod autoscaling
  • Cost-based scheduling
  • Resource right-sizing
  • Spot instance integration

Tools:

  • VPA operator
  • Goldilocks integration
  • Cost monitoring
  • Spot instance manager

6. Compliance and Governance

Policy Enforcement

Implementation:

  • OPA/Gatekeeper policies
  • Admission controllers
  • Compliance monitoring
  • Audit logging

Policies:

  • Resource quotas
  • Security standards
  • Cost limits
  • Naming conventions

Automated Compliance

Features:

  • Compliance scanning
  • Automated reporting
  • Policy violation alerts
  • Remediation automation

Standards:

  • SOC2 compliance
  • HIPAA requirements
  • GDPR compliance
  • PCI DSS standards

7. AI/ML Integration

Intelligent Operations

Features:

  • Predictive scaling
  • Anomaly detection
  • Automated troubleshooting
  • Performance prediction

Implementation:

  • ML model deployment
  • Training pipelines
  • Feature engineering
  • Model monitoring

ChatOps Integration

Features:

  • Slack/Teams integration
  • Natural language commands
  • Automated responses
  • Incident management

Tools:

  • Bot framework
  • NLP processing
  • Workflow automation
  • Knowledge base

8. Cost Management

FinOps Implementation

Features:

  • Cost allocation
  • Budget monitoring
  • Usage optimization
  • Chargeback reporting

Tools:

  • Kubecost integration
  • AWS Cost Explorer
  • Resource tagging
  • Cost forecasting

Implementation Priority Matrix

  1. High Priority (0-3 months):

    • Service mesh integration
    • Distributed tracing
    • GitOps implementation
    • Resource optimization
  2. Medium Priority (3-6 months):

    • Multi-region support
    • Advanced monitoring
    • Policy enforcement
    • Caching strategy
  3. Long-term (6+ months):

    • AI/ML integration
    • Zero trust architecture
    • Automated compliance
    • FinOps implementation

Expected Benefits

  1. Operational Improvements:

    • Reduced MTTR
    • Improved reliability
    • Better scalability
    • Enhanced security
  2. Business Impact:

    • Lower operational costs
    • Faster time to market
    • Better user experience
    • Increased compliance
  3. Team Efficiency:

    • Simplified operations
    • Reduced toil
    • Better visibility
    • Faster debugging

These enhancements will help create a solution that is:

  • πŸš€ More scalable and resilient
  • πŸ”’ More secure and compliant
  • πŸ“Š Better monitored and managed
  • πŸ’° More cost-effective
  • πŸ”§ Easier to maintain
  • πŸ‘₯ More developer-friendly

About

Production-ready Flask app with Docker, Kubernetes, Helm, Prometheus, and DevOps best practices.

Topics

Resources

Stars

Watchers

Forks

Packages

No packages published