This repository contains our final project for CD543/ECE549 (Computer Vision).
We re-implement a simplified version of LaneATT to study its architecture, hyperparameters, and performance on small subsets of TuSimple or CULane datasets.
curl -sSL https://install.python-poetry.org | POETRY_VERSION=1.1.12 python3 -
export PATH="$HOME/.local/bin:$PATH"
poetry --versiongit clone [email protected]:YOURUSER/laneatt-classproj.git
cd laneatt-classprojRun these two commands once after cloning:
git submodule init
git submodule updateThat will:
- Register the submodule
- Check out the correct commit inside
external/LaneATT
You should then see the LaneATT code under external/LaneATT/.
poetry install --no-root
poetry shellpython -c "import torch, torchvision, numpy, cv2; print(torch.__version__, torchvision.__version__, numpy.__version__, cv2.__version__)"If version numbers print without errors, the setup is complete.
If you have an NVIDIA GPU:
pip install --upgrade --index-url https://download.pytorch.org/whl/cu121 torch==2.5.1 torchvision==0.20.1
python -c "import torch; print(torch.__version__, torch.cuda.is_available())"- Requires Python 3.10–3.14
- Tested with Poetry 1.1.12 and PyTorch 2.5.1
- For reproducibility, all dependencies are defined in
pyproject.tomlandpoetry.lock