Open
Description
Hello,
thanks for this package, seems pretty useful.
I am trying to use it on a scRNAseq dataset (Seurat), I get the results, I can see pathways, but I don't see any FDR/p-value columns.
I checked also the PDF/excel files generated, but nothing.
How can I access to those?
> sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.2 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
locale:
[1] LC_CTYPE=en_GB.UTF-8 LC_NUMERIC=C LC_TIME=en_GB.UTF-8 LC_COLLATE=en_GB.UTF-8
[5] LC_MONETARY=en_GB.UTF-8 LC_MESSAGES=en_GB.UTF-8 LC_PAPER=en_GB.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] ReactomeGSA_1.6.1 DoubletFinder_2.0.3 dplyr_1.0.7 dsb_1.0.2 Nebulosa_1.2.0 SeuratWrappers_0.3.0
[7] clustree_0.4.4 ggraph_2.0.5 patchwork_1.1.1 SeuratObject_4.0.2 Seurat_4.0.3 harmony_0.1.0
[13] Rcpp_1.0.10 ggplot2_3.3.5 unixtools_0.1-1
loaded via a namespace (and not attached):
[1] utf8_1.2.1 reticulate_1.20 R.utils_2.10.1 ks_1.13.5
[5] tidyselect_1.1.1 htmlwidgets_1.5.3 grid_4.1.0 Rtsne_0.15
[9] munsell_0.5.0 codetools_0.2-18 ica_1.0-2 future_1.21.0
[13] miniUI_0.1.1.1 withr_2.5.0 colorspace_2.0-2 Biobase_2.52.0
[17] knitr_1.33 rstudioapi_0.13 stats4_4.1.0 SingleCellExperiment_1.14.1
[21] ROCR_1.0-11 tensor_1.5 listenv_0.8.0 labeling_0.4.2
[25] MatrixGenerics_1.4.0 GenomeInfoDbData_1.2.6 polyclip_1.10-0 farver_2.1.0
[29] parallelly_1.26.1 vctrs_0.3.8 generics_0.1.0 xfun_0.24
[33] ulimit_0.0-3 R6_2.5.0 doParallel_1.0.16 GenomeInfoDb_1.28.1
[37] clue_0.3-59 graphlayouts_0.7.1 rsvd_1.0.5 bitops_1.0-7
[41] spatstat.utils_3.0-1 DelayedArray_0.18.0 assertthat_0.2.1 promises_1.2.0.1
[45] scales_1.1.1 gtable_0.3.0 Cairo_1.5-12.2 globals_0.14.0
[49] goftest_1.2-2 tidygraph_1.2.0 rlang_1.0.6 GlobalOptions_0.1.2
[53] splines_4.1.0 lazyeval_0.2.2 spatstat.geom_3.0-6 BiocManager_1.30.16
[57] yaml_2.2.1 reshape2_1.4.4 abind_1.4-5 httpuv_1.6.1
[61] tools_4.1.0 ellipsis_0.3.2 gplots_3.1.1 spatstat.core_2.2-0
[65] RColorBrewer_1.1-2 BiocGenerics_0.38.0 ggridges_0.5.3 plyr_1.8.6
[69] progress_1.2.2 zlibbioc_1.38.0 purrr_0.3.4 RCurl_1.98-1.3
[73] prettyunits_1.1.1 rpart_4.1-15 deldir_1.0-6 pbapply_1.4-3
[77] GetoptLong_1.0.5 viridis_0.6.1 cowplot_1.1.1 S4Vectors_0.30.0
[81] zoo_1.8-9 SummarizedExperiment_1.22.0 ggrepel_0.9.1 cluster_2.1.2
[85] magrittr_2.0.1 data.table_1.14.0 scattermore_0.7 circlize_0.4.13
[89] lmtest_0.9-38 RANN_2.6.1 mvtnorm_1.1-3 fitdistrplus_1.1-5
[93] matrixStats_0.59.0 hms_1.1.0 mime_0.11 evaluate_0.14
[97] xtable_1.8-4 mclust_5.4.9 IRanges_2.26.0 gridExtra_2.3
[101] shape_1.4.6 compiler_4.1.0 tibble_3.1.2 KernSmooth_2.23-20
[105] crayon_1.4.1 R.oo_1.24.0 htmltools_0.5.4 mgcv_1.8-36
[109] later_1.2.0 tidyr_1.1.3 DBI_1.1.1 tweenr_1.0.2
[113] ComplexHeatmap_2.8.0 MASS_7.3-54 Matrix_1.3-4 cli_3.0.0
[117] R.methodsS3_1.8.1 parallel_4.1.0 igraph_1.2.6 GenomicRanges_1.44.0
[121] pkgconfig_2.0.3 plotly_4.9.4.1 spatstat.sparse_3.0-0 foreach_1.5.1
[125] XVector_0.32.0 stringr_1.4.0 digest_0.6.27 sctransform_0.3.2
[129] RcppAnnoy_0.0.18 pracma_2.3.8 spatstat.data_3.0-0 rmarkdown_2.9
[133] leiden_0.3.8 uwot_0.1.10 curl_4.3.2 shiny_1.6.0
[137] gtools_3.9.2 rjson_0.2.20 lifecycle_1.0.0 nlme_3.1-152
[141] jsonlite_1.7.2 viridisLite_0.4.0 limma_3.48.1 fansi_0.5.0
[145] pillar_1.6.1 lattice_0.20-44 fastmap_1.1.0 httr_1.4.2
[149] survival_3.2-11 glue_1.4.2 remotes_2.4.0 png_0.1-7
[153] iterators_1.0.13 ggforce_0.3.3 stringi_1.6.2 caTools_1.18.2
[157] irlba_2.3.3 future.apply_1.7.0
Metadata
Metadata
Assignees
Labels
No labels