-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcross_database.py
278 lines (251 loc) · 11.9 KB
/
cross_database.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
from typing import Any, Literal
from langchain_core.embeddings import Embeddings
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.messages import AIMessage, HumanMessage
from langchain_core.runnables import Runnable, RunnableConfig
from langgraph.graph.state import StateGraph
from agent.profiles.base import BaseGraphBuilder, BaseState
from agent.tasks.completeness_grader import (CompletenessGrade,
create_completeness_grader)
from agent.tasks.cross_database.rewrite_reactome_with_uniprot import \
create_reactome_rewriter_w_uniprot
from agent.tasks.cross_database.rewrite_uniprot_with_reactome import \
create_uniprot_rewriter_w_reactome
from agent.tasks.cross_database.summarize_reactome_uniprot import \
create_reactome_uniprot_summarizer
from agent.tasks.detect_language import create_language_detector
from agent.tasks.safety_checker import SafetyCheck, create_safety_checker
from retrievers.reactome.rag import create_reactome_rag
from retrievers.uniprot.rag import create_uniprot_rag
class CrossDatabaseState(BaseState):
safety: str # LLM-assessed safety level of the user input
query_language: str # language of the user input
reactome_query: str # LLM-generated query for Reactome
reactome_answer: str # LLM-generated answer from Reactome
reactome_completeness: str # LLM-assessed completeness of the Reactome answer
uniprot_query: str # LLM-generated query for UniProt
uniprot_answer: str # LLM-generated answer from UniProt
uniprot_completeness: str # LLM-assessed completeness of the UniProt answer
class CrossDatabaseGraphBuilder(BaseGraphBuilder):
def __init__(
self,
llm: BaseChatModel,
embedding: Embeddings,
) -> None:
super().__init__(llm, embedding)
# Create runnables (tasks & tools)
self.reactome_rag: Runnable = create_reactome_rag(llm, embedding)
self.uniprot_rag: Runnable = create_uniprot_rag(llm, embedding)
self.safety_checker = create_safety_checker(llm)
self.completeness_checker = create_completeness_grader(llm)
self.detect_language = create_language_detector(llm)
self.write_reactome_query = create_reactome_rewriter_w_uniprot(llm)
self.write_uniprot_query = create_uniprot_rewriter_w_reactome(llm)
self.summarize_final_answer = create_reactome_uniprot_summarizer(
llm.model_copy(update={"streaming": True})
)
# Create graph
state_graph = StateGraph(CrossDatabaseState)
# Set up nodes
state_graph.add_node("check_question_safety", self.check_question_safety)
state_graph.add_node("preprocess_question", self.preprocess)
state_graph.add_node("identify_query_language", self.identify_query_language)
state_graph.add_node("conduct_research", self.conduct_research)
state_graph.add_node("generate_reactome_answer", self.generate_reactome_answer)
state_graph.add_node("rewrite_reactome_query", self.rewrite_reactome_query)
state_graph.add_node("rewrite_reactome_answer", self.rewrite_reactome_answer)
state_graph.add_node("generate_uniprot_answer", self.generate_uniprot_answer)
state_graph.add_node("rewrite_uniprot_query", self.rewrite_uniprot_query)
state_graph.add_node("rewrite_uniprot_answer", self.rewrite_uniprot_answer)
state_graph.add_node("assess_completeness", self.assess_completeness)
state_graph.add_node("decide_next_steps", self.decide_next_steps)
state_graph.add_node("generate_final_response", self.generate_final_response)
state_graph.add_node("postprocess", self.postprocess)
# Set up edges
state_graph.set_entry_point("preprocess_question")
state_graph.add_edge("preprocess_question", "identify_query_language")
state_graph.add_edge("preprocess_question", "check_question_safety")
state_graph.add_conditional_edges(
"check_question_safety",
self.proceed_with_research,
{"Continue": "conduct_research", "Finish": "generate_final_response"},
)
state_graph.add_edge("conduct_research", "generate_reactome_answer")
state_graph.add_edge("conduct_research", "generate_uniprot_answer")
state_graph.add_edge("generate_reactome_answer", "assess_completeness")
state_graph.add_edge("generate_uniprot_answer", "assess_completeness")
state_graph.add_conditional_edges(
"assess_completeness",
self.decide_next_steps,
{
"generate_final_response": "generate_final_response",
"perform_web_search": "generate_final_response",
"rewrite_reactome_query": "rewrite_reactome_query",
"rewrite_uniprot_query": "rewrite_uniprot_query",
},
)
state_graph.add_edge("rewrite_reactome_query", "rewrite_reactome_answer")
state_graph.add_edge("rewrite_uniprot_query", "rewrite_uniprot_answer")
state_graph.add_edge("rewrite_reactome_answer", "generate_final_response")
state_graph.add_edge("rewrite_uniprot_answer", "generate_final_response")
state_graph.add_edge("generate_final_response", "postprocess")
state_graph.set_finish_point("postprocess")
self.uncompiled_graph: StateGraph = state_graph
async def check_question_safety(
self, state: CrossDatabaseState, config: RunnableConfig
) -> CrossDatabaseState:
result: SafetyCheck = await self.safety_checker.ainvoke(
{"input": state["rephrased_input"]},
config,
)
if result.binary_score == "No":
inappropriate_input = f"This is the user's question and it is NOT appropriate for you to answer: {state["user_input"]}. \n\n explain that you are unable to answer the question but you can answer questions about topics related to the Reactome Pathway Knowledgebase or UniProt Knowledgebas."
return CrossDatabaseState(
safety=result.binary_score,
user_input=inappropriate_input,
reactome_answer="",
uniprot_answer="",
)
else:
return CrossDatabaseState(safety=result.binary_score)
async def proceed_with_research(
self, state: CrossDatabaseState
) -> Literal["Continue", "Finish"]:
if state["safety"] == "Yes":
return "Continue"
else:
return "Finish"
async def identify_query_language(
self, state: CrossDatabaseState, config: RunnableConfig
) -> CrossDatabaseState:
query_language: str = await self.detect_language.ainvoke(
{"user_input": state["user_input"]}, config
)
return CrossDatabaseState(query_language=query_language)
async def conduct_research(
self, state: CrossDatabaseState, config: RunnableConfig
) -> CrossDatabaseState:
return CrossDatabaseState()
async def generate_reactome_answer(
self, state: CrossDatabaseState, config: RunnableConfig
) -> CrossDatabaseState:
reactome_answer: dict[str, Any] = await self.reactome_rag.ainvoke(
{
"input": state["rephrased_input"],
"chat_history": state["chat_history"],
},
config,
)
return CrossDatabaseState(reactome_answer=reactome_answer["answer"])
async def generate_uniprot_answer(
self, state: CrossDatabaseState, config: RunnableConfig
) -> CrossDatabaseState:
uniprot_answer: dict[str, Any] = await self.uniprot_rag.ainvoke(
{
"input": state["rephrased_input"],
"chat_history": state["chat_history"],
},
config,
)
return CrossDatabaseState(uniprot_answer=uniprot_answer["answer"])
async def rewrite_reactome_query(
self, state: CrossDatabaseState, config: RunnableConfig
) -> CrossDatabaseState:
reactome_query: str = await self.write_reactome_query.ainvoke(
{
"input": state["rephrased_input"],
"uniprot_answer": state["uniprot_answer"],
},
config,
)
return CrossDatabaseState(reactome_query=reactome_query)
async def rewrite_uniprot_query(
self, state: CrossDatabaseState, config: RunnableConfig
) -> CrossDatabaseState:
uniprot_query: str = await self.write_uniprot_query.ainvoke(
{
"input": state["rephrased_input"],
"reactome_answer": state["reactome_answer"],
},
config,
)
return CrossDatabaseState(uniprot_query=uniprot_query)
async def rewrite_reactome_answer(
self, state: CrossDatabaseState, config: RunnableConfig
) -> CrossDatabaseState:
rewritten_answer: dict[str, Any] = await self.reactome_rag.ainvoke(
{
"input": state["reactome_query"],
"chat_history": state["chat_history"],
},
config,
)
return CrossDatabaseState(reactome_answer=rewritten_answer["answer"])
async def rewrite_uniprot_answer(
self, state: CrossDatabaseState, config: RunnableConfig
) -> CrossDatabaseState:
rewritten_answer: dict[str, Any] = await self.uniprot_rag.ainvoke(
{
"input": state["uniprot_query"],
"chat_history": state["chat_history"],
},
config,
)
return CrossDatabaseState(uniprot_answer=rewritten_answer["answer"])
async def assess_completeness(
self, state: CrossDatabaseState, config: RunnableConfig
) -> CrossDatabaseState:
reactome_completeness_async = self.completeness_checker.ainvoke(
{"input": state["rephrased_input"], "generation": state["reactome_answer"]},
config,
)
uniprot_completeness_async = self.completeness_checker.ainvoke(
{"input": state["rephrased_input"], "generation": state["uniprot_answer"]},
config,
)
reactome_completeness: CompletenessGrade = await reactome_completeness_async
uniprot_completeness: CompletenessGrade = await uniprot_completeness_async
return CrossDatabaseState(
reactome_completeness=reactome_completeness.binary_score,
uniprot_completeness=uniprot_completeness.binary_score,
)
async def decide_next_steps(self, state: CrossDatabaseState) -> Literal[
"generate_final_response",
"perform_web_search",
"rewrite_reactome_query",
"rewrite_uniprot_query",
]:
reactome_complete = state["reactome_completeness"] != "No"
uniprot_complete = state["uniprot_completeness"] != "No"
if reactome_complete and uniprot_complete:
return "generate_final_response"
elif not reactome_complete and uniprot_complete:
return "rewrite_reactome_query"
elif reactome_complete and not uniprot_complete:
return "rewrite_uniprot_query"
else:
return "perform_web_search"
async def generate_final_response(
self, state: CrossDatabaseState, config: RunnableConfig
) -> CrossDatabaseState:
final_response: str = await self.summarize_final_answer.ainvoke(
{
"input": state["rephrased_input"],
"query_language": state["query_language"],
"reactome_answer": state["reactome_answer"],
"uniprot_answer": state["uniprot_answer"],
},
config,
)
return CrossDatabaseState(
chat_history=[
HumanMessage(state["user_input"]),
AIMessage(final_response),
],
answer=final_response,
)
def create_cross_database_graph(
llm: BaseChatModel,
embedding: Embeddings,
) -> StateGraph:
return CrossDatabaseGraphBuilder(llm, embedding).uncompiled_graph