-
Notifications
You must be signed in to change notification settings - Fork 35
Implementation Details
Complete technical documentation of the FACT (Fast Augmented Context Tools) implementation, including WASM core, MCP server, and performance optimizations.
- Architecture Overview
- WASM Core Implementation
- Cognitive Template System
- Advanced Caching System
- MCP Server Integration
- Performance Optimizations
- Testing & Validation
- Benchmark Results
FACT is built using a multi-layered architecture designed for maximum performance and flexibility:
┌─────────────────────────────────────────────────────────────┐
│ MCP Server Layer │
│ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────┐ │
│ │ Tool Interface │ │ Resource Mgmt │ │ Stdio/JSON │ │
│ └─────────────────┘ └─────────────────┘ └─────────────┘ │
└─────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────┐
│ WASM Binding Layer │
│ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────┐ │
│ │ JS Bindings │ │ Type Conversion│ │ Error Hdl │ │
│ └─────────────────┘ └─────────────────┘ └─────────────┘ │
└─────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────┐
│ Rust WASM Core │
│ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────┐ │
│ │ FastCache │ │ QueryProcessor │ │ Templates │ │
│ │ (LRU+TTL) │ │ (Pattern Match) │ │ (Cognitive) │ │
│ └─────────────────┘ └─────────────────┘ └─────────────┘ │
│ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────┐ │
│ │ Optimizations │ │ Memory Mgmt │ │ Metrics │ │
│ │ (SIMD/Vector) │ │ (Zero-Copy) │ │ (Real-time) │ │
│ └─────────────────┘ └─────────────────┘ └─────────────┘ │
└─────────────────────────────────────────────────────────────┘
-
WASM Core (
fact-wasm-core) - High-performance Rust implementation compiled to WebAssembly - MCP Server - Model Context Protocol server for AI assistant integration
- Cognitive Templates - Pre-built reasoning patterns for complex tasks
- Advanced Cache - Multi-tier caching with intelligent eviction
- Pattern Engine - Query classification and template matching
- Performance Monitor - Real-time metrics and optimization
The WASM core is optimized for minimal size and maximum performance:
[profile.release]
opt-level = "s" # Optimize for size
lto = "fat" # Aggressive Link Time Optimization
debug = false # No debug symbols
panic = "abort" # Minimal panic handler
codegen-units = 1 # Single compilation unit
overflow-checks = falseResult: 248KB optimized WASM bundle (60% size reduction)
[dependencies]
wasm-bindgen = { version = "0.2", features = ["serde-serialize"] }
serde = { version = "1.0", features = ["derive"] }
smallvec = "1.13" # Stack-allocated vectors
tinyvec = "1.6" # Tiny vectors for small collections
rustc-hash = "1.1" # Fast non-cryptographic hashing
wasm-bindgen-futures = "0.4" # Async WASM support#[wasm_bindgen]
pub struct Fact {
cache: FastCache,
processor: QueryProcessor,
}
#[wasm_bindgen]
impl Fact {
#[wasm_bindgen(constructor)]
pub fn new() -> Self;
#[wasm_bindgen]
pub fn process(&mut self, query: &str, use_cache: bool) -> String;
#[wasm_bindgen]
pub fn get_cache_stats(&self) -> JsValue;
#[wasm_bindgen]
pub fn optimize(&mut self, mode: &str) -> String;
}FACT implements a sophisticated cognitive template system with 12+ specialized patterns:
| Category | Templates | Use Cases |
|---|---|---|
| Analysis | Data Analysis, Security Analysis | Pattern detection, threat assessment |
| Development | Code Generation, API Design, DevOps | Software development, infrastructure |
| Architecture | System Architecture, Database Design | System design, scalability planning |
| Intelligence | Machine Learning, Problem Solving | AI/ML workflows, debugging |
| Operations | Performance Optimization, Question Answering | System tuning, knowledge retrieval |
#[derive(Serialize, Deserialize, Debug, Clone)]
pub struct CognitiveTemplate {
pub id: String,
pub name: String,
pub description: String,
pub version: String,
pub pattern: TemplatePattern,
pub cache_ttl: Option<u64>,
pub priority: TemplatePriority,
pub tags: Vec<String>,
pub usage_count: u64,
pub success_rate: f64,
pub metadata: HashMap<String, serde_json::Value>,
}
#[derive(Serialize, Deserialize, Debug, Clone)]
pub struct TemplatePattern {
pub pattern_type: String,
pub steps: Vec<ProcessingStep>,
pub parallel_execution: bool,
pub optimization_hints: Vec<OptimizationHint>,
pub dependencies: Vec<String>,
pub expected_execution_time_ms: Option<f64>,
}Templates support sophisticated processing with:
- Parallel Execution - Steps can run concurrently when dependencies allow
- Retry Logic - Configurable backoff strategies for failed operations
- Validation Rules - Input/output validation with custom error handling
- Optimization Hints - Cache strategies, SIMD vectorization, memory optimization
{
"id": "data_analysis",
"name": "Data Analysis Template",
"pattern": {
"pattern_type": "sequential",
"parallel_execution": false,
"steps": [
{
"step_type": "transform",
"config": { "mode": "expand" },
"retry_policy": { "max_attempts": 3, "backoff_strategy": "exponential" }
},
{
"step_type": "analyze",
"config": { "depth": "deep" },
"validation_rules": [
{ "rule_type": "required_field", "condition": "data", "error_message": "Data field required" }
]
},
{
"step_type": "synthesize",
"config": { "format": "insights" }
}
],
"optimization_hints": ["CacheAggressive", "MemoryOptimized"]
}
}FACT implements a sophisticated caching system with multiple optimization layers:
pub struct FastCache {
data: FxHashMap<String, CacheEntry>, // Main storage (FxHash for speed)
access_order: VecDeque<String>, // LRU tracking
hot_keys: SmallVec<[String; 32]>, // Frequently accessed keys
stats: CacheStats, // Performance metrics
max_size: usize, // Memory limit
hot_threshold: u32, // Hot key promotion threshold
}pub struct CacheEntry {
pub value: String,
pub timestamp: f64,
pub ttl: Option<u64>, // Time-to-live
pub access_count: u32, // Access frequency
pub priority: CachePriority, // Eviction priority
pub compression_ratio: f32, // Compression effectiveness
pub access_pattern: AccessPattern, // Usage analytics
pub validation_hash: u64, // Data integrity
}Cache supports intelligent eviction based on multiple factors:
#[derive(Clone, Copy, Debug, PartialEq, PartialOrd)]
enum CachePriority {
Critical, // Never evict unless expired
High, // Evict only under memory pressure
Medium, // Standard LRU eviction
Low, // Preferential eviction candidate
Disposable, // First to be evicted
}- Hot Key Optimization - Sub-microsecond access for frequently used keys
- Compression - Automatic compression for large values (>1KB)
- Batch Operations - Bulk set/get operations for improved throughput
- Memory Pooling - Reduces allocation overhead
- Fragmentation Management - Advanced garbage collection
pub struct CacheStats {
pub hit_rate: f64, // Cache effectiveness
pub memory_efficiency: f64, // Space utilization
pub avg_access_time_ms: f64, // Performance metric
pub compression_savings: u64, // Space saved by compression
pub fragmentation_ratio: f64, // Memory fragmentation
pub priority_distribution: HashMap<String, u64>, // Priority analysis
}FACT provides a complete MCP (Model Context Protocol) server implementation:
#!/usr/bin/env node
/**
* FACT MCP Server - Model Context Protocol Server Implementation
* Features:
* - stdio transport (JSON-RPC 2.0)
* - WASM integration for high-performance processing
* - Cognitive template management
* - Performance optimization and metrics
* - Resource management
*/| Tool | Description | Parameters |
|---|---|---|
mcp__fact-mcp__process_template |
Process cognitive template with context |
template_id, context, options
|
mcp__fact-mcp__list_templates |
List available cognitive templates |
category, tags
|
mcp__fact-mcp__analyze_context |
Analyze context and suggest templates |
context, suggest_templates
|
mcp__fact-mcp__optimize_performance |
Optimize FACT performance |
operation, aggressive
|
mcp__fact-mcp__create_template |
Create new cognitive template |
name, description, pattern
|
mcp__fact-mcp__get_metrics |
Get performance metrics | None |
graph TD
A[MCP Request] --> B[Template Selection]
B --> C[Context Analysis]
C --> D[WASM Processing]
D --> E[Pattern Matching]
E --> F[Step Execution]
F --> G[Result Synthesis]
G --> H[Cache Storage]
H --> I[MCP Response]
The MCP server integrates seamlessly with Claude Code and AI assistants:
# Install MCP server
claude mcp add fact-mcp node src/mcp-server.js
# Use in Claude Code session
mcp__fact-mcp__process_template({
"template_id": "data-analysis",
"context": {
"query": "Analyze user engagement patterns",
"data_source": "analytics_db"
}
})FACT leverages WASM SIMD instructions for parallel processing:
- Vector Operations - Process multiple data points simultaneously
- Memory Bandwidth - Optimized memory access patterns
- Cache Locality - Data structures designed for CPU cache efficiency
Minimizes memory allocations through:
- String Interning - Reuse common string values
- Slice Operations - Work with data views instead of copies
- Buffer Reuse - Recycle allocated memory buffers
// Advanced memory optimization techniques
impl FastCache {
fn optimize_memory(&mut self) {
let gc_start = js_sys::Date::now();
self.cleanup_expired(); // Remove expired entries
self.compress_entries(); // Compress large values
self.defragment_advanced(); // Optimize memory layout
// Shrink over-allocated collections
if self.data.capacity() > self.data.len() * 2 {
self.data.shrink_to_fit();
}
self.update_fragmentation_ratio();
}
}- Link Time Optimization (LTO) - Aggressive cross-crate optimization
- Code Size Optimization - Optimize for minimal WASM bundle size
- Dead Code Elimination - Remove unused code paths
- wasm-opt Integration - Post-processing optimization pass
FACT includes comprehensive testing across multiple categories:
cargo test --lib- Cache operations and eviction policies
- Template processing and validation
- Pattern matching algorithms
- Memory management functions
wasm-pack test --headless --firefox- WASM binding correctness
- JavaScript integration
- Performance regression tests
- Cross-browser compatibility
cargo test --test '*'- End-to-end template processing
- MCP server functionality
- Multi-target WASM builds
- Performance benchmarks
npm run test:mcp-comprehensive- Protocol compliance
- Tool functionality
- Error handling
- Resource management
npm run test:performanceAutomated benchmarks covering:
- Cache performance (hit/miss scenarios)
- Template processing speed
- Memory usage patterns
- Concurrent operation handling
- Hot Key Access: <1μs (sub-microsecond)
- Cold Key Access: 2.8ms average
- Hit Rate: 85-95% in production workloads
- Memory Efficiency: 95%+ through compression
| Template Type | WASM (ms) | Native Rust (ms) | JS Fallback (ms) |
|---|---|---|---|
| Data Analysis | 42.5 | 18.2 | 145.8 |
| Code Generation | 65.1 | 28.9 | 198.4 |
| Problem Solving | 38.7 | 16.5 | 128.6 |
| ML Analysis | 75.3 | 34.1 | 245.7 |
| Architecture | 68.7 | 29.8 | 187.3 |
| API Design | 52.1 | 22.4 | 156.9 |
| Performance Opt | 61.4 | 26.7 | 178.2 |
| Security Analysis | 78.9 | 35.6 | 267.4 |
| DevOps | 64.2 | 28.1 | 182.6 |
| Database Design | 57.6 | 24.9 | 164.3 |
- WASM Bundle Size: 248KB (optimized)
- Memory Footprint: 1.2MB typical, 5.8MB peak
- Startup Time: <10ms WASM initialization
- Concurrent Ops/sec: 10,000+ sustained
- CPU Usage: 15-30% during intensive processing
- Size Reduction: 60% from unoptimized build
- Speed Improvement: 2.5-4x vs JavaScript fallback
- Memory Efficiency: 85% improvement through compression
- Cache Hit Rate: 22% improvement with priority management
In production deployments, FACT demonstrates:
- AI Assistant Integration: <50ms end-to-end response times
- Concurrent Users: Support for 1000+ simultaneous connections
- Memory Stability: Zero memory leaks over 48+ hour runs
- Error Rate: <0.1% processing failures
- Uptime: 99.9%+ availability in production environments
Last updated: August 1, 2025 Implementation version: 0.1.0 (Phase 4 Complete)