The Fantasy Land Specification "specifies interoperability of common
algebraic structures" by defining a number of type classes. For each type
class, it states laws which every member of a type must obey in order for
the type to be a member of the type class. In order for the Maybe type to
be considered a Functor, for example, every Maybe a value must have
a fantasy-land/map method which obeys the identity and composition laws.
This project provides:
TypeClass, a function for defining type classes;- one
TypeClassvalue for each Fantasy Land type class; - lawful Fantasy Land methods for JavaScript's built-in types;
- one function for each Fantasy Land method; and
- several functions derived from these functions.
Setoid Semigroupoid Semigroup Foldable Functor Contravariant Filterable (equals) (compose) (concat) (reduce) (map) (contramap) (filter) | | | \ / | | | | \ | | | \ / | | | | \ | | | \ / | | | | \ | | | \ / | | | | \ | | | \ / | | | | \ Ord Category Monoid Traversable | | | | \ (lte) (id) (empty) (traverse) / | | \ \ | / | | \ \ | / / \ \ \ | Profunctor / \ Bifunctor \ | (promap) / \ (bimap) \ | / \ \ Group / \ \ (invert) Alt Apply Extend (alt) (ap) (extend) / / \ \ / / \ \ / / \ \ / / \ \ / / \ \ Plus Applicative Chain Comonad (zero) (of) (chain) (extract) \ / \ / \ \ / \ / \ \ / \ / \ \ / \ / \ \ / \ / \ Alternative Monad ChainRec (chainRec)
The arguments are:
- the name of the type class, prefixed by its npm package name;
- the documentation URL of the type class;
- an array of dependencies; and
- a predicate which accepts any JavaScript value and returns
trueif the value satisfies the requirements of the type class;falseotherwise.
Example:
// hasMethod :: String -> a -> Boolean
const hasMethod = name => x => x != null && typeof x[name] == 'function';
// Foo :: TypeClass
const Foo = Z.TypeClass (
'my-package/Foo',
'http://example.com/my-package#Foo',
[],
hasMethod ('foo')
);
// Bar :: TypeClass
const Bar = Z.TypeClass (
'my-package/Bar',
'http://example.com/my-package#Bar',
[Foo],
hasMethod ('bar')
);Types whose values have a foo method are members of the Foo type class.
Members of the Foo type class whose values have a bar method are also
members of the Bar type class.
Each TypeClass value has a test field: a function which accepts
any JavaScript value and returns true if the value satisfies the
type class's predicate and the predicates of all the type class's
dependencies; false otherwise.
TypeClass values may be used with sanctuary-def
to define parametrically polymorphic functions which verify their
type-class constraints at run time.
TypeClass value for Setoid.
> Z.Setoid.test (null)
true
> Z.Setoid.test (Useless)
false
> Z.Setoid.test ([1, 2, 3])
true
> Z.Setoid.test ([Useless])
falseTypeClass value for Ord.
> Z.Ord.test (0)
true
> Z.Ord.test (Math.sqrt)
false
> Z.Ord.test ([1, 2, 3])
true
> Z.Ord.test ([Math.sqrt])
falseTypeClass value for Semigroupoid.
> Z.Semigroupoid.test (Math.sqrt)
true
> Z.Semigroupoid.test (0)
falseTypeClass value for Category.
> Z.Category.test (Math.sqrt)
true
> Z.Category.test (0)
falseTypeClass value for Semigroup.
> Z.Semigroup.test ('')
true
> Z.Semigroup.test (0)
falseTypeClass value for Monoid.
> Z.Monoid.test ('')
true
> Z.Monoid.test (0)
falseTypeClass value for Group.
> Z.Group.test (Sum (0))
true
> Z.Group.test ('')
falseTypeClass value for Filterable.
> Z.Filterable.test ({})
true
> Z.Filterable.test ('')
falseTypeClass value for Functor.
> Z.Functor.test ([])
true
> Z.Functor.test ('')
falseTypeClass value for Bifunctor.
> Z.Bifunctor.test (Pair ('foo') (64))
true
> Z.Bifunctor.test ([])
falseTypeClass value for Profunctor.
> Z.Profunctor.test (Math.sqrt)
true
> Z.Profunctor.test ([])
falseTypeClass value for Apply.
> Z.Apply.test ([])
true
> Z.Apply.test ('')
falseTypeClass value for Applicative.
> Z.Applicative.test ([])
true
> Z.Applicative.test ({})
falseTypeClass value for Chain.
> Z.Chain.test ([])
true
> Z.Chain.test ({})
falseTypeClass value for ChainRec.
> Z.ChainRec.test ([])
true
> Z.ChainRec.test ({})
falseTypeClass value for Monad.
> Z.Monad.test ([])
true
> Z.Monad.test ({})
falseTypeClass value for Alt.
> Z.Alt.test ({})
true
> Z.Alt.test ('')
falseTypeClass value for Plus.
> Z.Plus.test ({})
true
> Z.Plus.test ('')
falseTypeClass value for Alternative.
> Z.Alternative.test ([])
true
> Z.Alternative.test ({})
falseTypeClass value for Foldable.
> Z.Foldable.test ({})
true
> Z.Foldable.test ('')
falseTypeClass value for Traversable.
> Z.Traversable.test ([])
true
> Z.Traversable.test ('')
falseTypeClass value for Extend.
> Z.Extend.test ([])
true
> Z.Extend.test ({})
falseTypeClass value for Comonad.
> Z.Comonad.test (Identity (0))
true
> Z.Comonad.test ([])
falseTypeClass value for Contravariant.
> Z.Contravariant.test (Math.sqrt)
true
> Z.Contravariant.test ([])
falseReturns true if its arguments are equal; false otherwise.
Specifically:
-
Arguments with different type identities are unequal.
-
If the first argument has a
fantasy-land/equalsmethod, that method is invoked to determine whether the arguments are equal (fantasy-land/equalsimplementations are provided for the following built-in types: Null, Undefined, Boolean, Number, Date, RegExp, String, Array, Arguments, Error, Object, and Function). -
Otherwise, the arguments are equal if their entries are equal (according to this algorithm).
The algorithm supports circular data structures. Two arrays are equal
if they have the same index paths and for each path have equal values.
Two arrays which represent [1, [1, [1, [1, [1, ...]]]]], for example,
are equal even if their internal structures differ. Two objects are equal
if they have the same property paths and for each path have equal values.
> Z.equals (0, -0)
true
> Z.equals (NaN, NaN)
true
> Z.equals (Cons (1, Cons (2, Nil)), Cons (1, Cons (2, Nil)))
true
> Z.equals (Cons (1, Cons (2, Nil)), Cons (2, Cons (1, Nil)))
falseReturns true if its arguments are of the same type and the first is
less than the second according to the type's fantasy-land/lte
method; false otherwise.
This function is derived from lte.
> Z.lt (0, 0)
false
> Z.lt (0, 1)
true
> Z.lt (1, 0)
falseReturns true if its arguments are of the same type and the first
is less than or equal to the second according to the type's
fantasy-land/lte method; false otherwise.
fantasy-land/lte implementations are provided for the following
built-in types: Null, Undefined, Boolean, Number, Date, String, Array,
Arguments, and Object.
The algorithm supports circular data structures in the same manner as
equals.
> Z.lte (0, 0)
true
> Z.lte (0, 1)
true
> Z.lte (1, 0)
falseReturns true if its arguments are of the same type and the first is
greater than the second according to the type's fantasy-land/lte
method; false otherwise.
This function is derived from lte.
> Z.gt (0, 0)
false
> Z.gt (0, 1)
false
> Z.gt (1, 0)
trueReturns true if its arguments are of the same type and the first
is greater than or equal to the second according to the type's
fantasy-land/lte method; false otherwise.
This function is derived from lte.
> Z.gte (0, 0)
true
> Z.gte (0, 1)
false
> Z.gte (1, 0)
trueReturns the smaller of its two arguments.
This function is derived from lte.
See also max.
> Z.min (10, 2)
2
> Z.min (new Date ('1999-12-31'), new Date ('2000-01-01'))
new Date ('1999-12-31')
> Z.min ('10', '2')
'10'Returns the larger of its two arguments.
This function is derived from lte.
See also min.
> Z.max (10, 2)
10
> Z.max (new Date ('1999-12-31'), new Date ('2000-01-01'))
new Date ('2000-01-01')
> Z.max ('10', '2')
'2'Takes a lower bound, an upper bound, and a value of the same type. Returns the value if it is within the bounds; the nearer bound otherwise.
This function is derived from min and max.
> Z.clamp (0, 100, 42)
42
> Z.clamp (0, 100, -1)
0
> Z.clamp ('A', 'Z', '~')
'Z'Function wrapper for fantasy-land/compose.
fantasy-land/compose implementations are provided for the following
built-in types: Function.
> Z.compose (Math.sqrt, x => x + 1) (99)
10Function wrapper for fantasy-land/id.
fantasy-land/id implementations are provided for the following
built-in types: Function.
> Z.id (Function) ('foo')
'foo'Function wrapper for fantasy-land/concat.
fantasy-land/concat implementations are provided for the following
built-in types: String, Array, and Object.
> Z.concat ('abc', 'def')
'abcdef'
> Z.concat ([1, 2, 3], [4, 5, 6])
[1, 2, 3, 4, 5, 6]
> Z.concat ({x: 1, y: 2}, {y: 3, z: 4})
{x: 1, y: 3, z: 4}
> Z.concat (Cons ('foo', Cons ('bar', Cons ('baz', Nil))), Cons ('quux', Nil))
Cons ('foo', Cons ('bar', Cons ('baz', Cons ('quux', Nil))))Function wrapper for fantasy-land/empty.
fantasy-land/empty implementations are provided for the following
built-in types: String, Array, and Object.
> Z.empty (String)
''
> Z.empty (Array)
[]
> Z.empty (Object)
{}
> Z.empty (List)
NilFunction wrapper for fantasy-land/invert.
> Z.invert (Sum (5))
Sum (-5)Function wrapper for fantasy-land/filter. Discards every element
which does not satisfy the predicate.
fantasy-land/filter implementations are provided for the following
built-in types: Array and Object.
See also reject.
> Z.filter (x => x % 2 == 1, [1, 2, 3])
[1, 3]
> Z.filter (x => x % 2 == 1, {x: 1, y: 2, z: 3})
{x: 1, z: 3}
> Z.filter (x => x % 2 == 1, Cons (1, Cons (2, Cons (3, Nil))))
Cons (1, Cons (3, Nil))
> Z.filter (x => x % 2 == 1, Nothing)
Nothing
> Z.filter (x => x % 2 == 1, Just (0))
Nothing
> Z.filter (x => x % 2 == 1, Just (1))
Just (1)Discards every element which satisfies the predicate.
This function is derived from filter.
> Z.reject (x => x % 2 == 1, [1, 2, 3])
[2]
> Z.reject (x => x % 2 == 1, {x: 1, y: 2, z: 3})
{y: 2}
> Z.reject (x => x % 2 == 1, Cons (1, Cons (2, Cons (3, Nil))))
Cons (2, Nil)
> Z.reject (x => x % 2 == 1, Nothing)
Nothing
> Z.reject (x => x % 2 == 1, Just (0))
Just (0)
> Z.reject (x => x % 2 == 1, Just (1))
NothingFunction wrapper for fantasy-land/map.
fantasy-land/map implementations are provided for the following
built-in types: Array, Object, and Function.
> Z.map (Math.sqrt, [1, 4, 9])
[1, 2, 3]
> Z.map (Math.sqrt, {x: 1, y: 4, z: 9})
{x: 1, y: 2, z: 3}
> Z.map (Math.sqrt, s => s.length) ('Sanctuary')
3
> Z.map (Math.sqrt, Pair ('foo') (64))
Pair ('foo') (8)
> Z.map (Math.sqrt, Nil)
Nil
> Z.map (Math.sqrt, Cons (1, Cons (4, Cons (9, Nil))))
Cons (1, Cons (2, Cons (3, Nil)))Maps over the given functions, applying each to the given value.
This function is derived from map.
> Z.flip (x => y => x + y, '!') ('foo')
'foo!'
> Z.flip ([Math.floor, Math.ceil], 1.5)
[1, 2]
> Z.flip ({floor: Math.floor, ceil: Math.ceil}, 1.5)
{floor: 1, ceil: 2}
> Z.flip (Cons (Math.floor, Cons (Math.ceil, Nil)), 1.5)
Cons (1, Cons (2, Nil))Function wrapper for fantasy-land/bimap.
> Z.bimap (s => s.toUpperCase (), Math.sqrt, Pair ('foo') (64))
Pair ('FOO') (8)Maps the given function over the left side of a Bifunctor.
> Z.mapLeft (Math.sqrt, Pair (64) (9))
Pair (8) (9)Function wrapper for fantasy-land/promap.
fantasy-land/promap implementations are provided for the following
built-in types: Function.
> Z.promap (Math.abs, x => x + 1, Math.sqrt) (-100)
11Function wrapper for fantasy-land/ap.
fantasy-land/ap implementations are provided for the following
built-in types: Array, Object, and Function.
> Z.ap ([Math.sqrt, x => x * x], [1, 4, 9, 16, 25])
[1, 2, 3, 4, 5, 1, 16, 81, 256, 625]
> Z.ap ({a: Math.sqrt, b: x => x * x}, {a: 16, b: 10, c: 1})
{a: 4, b: 100}
> Z.ap (s => n => s.slice (0, n), s => Math.ceil (s.length / 2)) ('Haskell')
'Hask'
> Z.ap (Identity (Math.sqrt), Identity (64))
Identity (8)
> Z.ap (Cons (Math.sqrt, Cons (x => x * x, Nil)), Cons (16, Cons (100, Nil)))
Cons (4, Cons (10, Cons (256, Cons (10000, Nil))))Lifts a -> b -> c to Apply f => f a -> f b -> f c and returns the
result of applying this to the given arguments.
This function is derived from map and ap.
See also lift3.
> Z.lift2 (x => y => Math.pow (x, y), [10], [1, 2, 3])
[10, 100, 1000]
> Z.lift2 (x => y => Math.pow (x, y), Identity (10), Identity (3))
Identity (1000)Lifts a -> b -> c -> d to Apply f => f a -> f b -> f c -> f d and
returns the result of applying this to the given arguments.
This function is derived from map and ap.
See also lift2.
> Z.lift3 (x => y => z => x + z + y,
. ['<', '['],
. ['>', ']'],
. ['foo', 'bar', 'baz'])
[ '<foo>', '<bar>', '<baz>',
. '<foo]', '<bar]', '<baz]',
. '[foo>', '[bar>', '[baz>',
. '[foo]', '[bar]', '[baz]' ]
> Z.lift3 (x => y => z => x + z + y,
. Identity ('<'),
. Identity ('>'),
. Identity ('baz'))
Identity ('<baz>')Combines two effectful actions, keeping only the result of the first.
Equivalent to Haskell's (<*) function.
This function is derived from lift2.
See also apSecond.
> Z.apFirst ([1, 2], [3, 4])
[1, 1, 2, 2]
> Z.apFirst (Identity (1), Identity (2))
Identity (1)Combines two effectful actions, keeping only the result of the second.
Equivalent to Haskell's (*>) function.
This function is derived from lift2.
See also apFirst.
> Z.apSecond ([1, 2], [3, 4])
[3, 4, 3, 4]
> Z.apSecond (Identity (1), Identity (2))
Identity (2)Function wrapper for fantasy-land/of.
fantasy-land/of implementations are provided for the following
built-in types: Array and Function.
> Z.of (Array, 42)
[42]
> Z.of (Function, 42) (null)
42
> Z.of (List, 42)
Cons (42, Nil)Returns the result of appending the first argument to the second.
This function is derived from concat and of.
See also prepend.
> Z.append (3, [1, 2])
[1, 2, 3]
> Z.append (3, Cons (1, Cons (2, Nil)))
Cons (1, Cons (2, Cons (3, Nil)))Returns the result of prepending the first argument to the second.
This function is derived from concat and of.
See also append.
> Z.prepend (1, [2, 3])
[1, 2, 3]
> Z.prepend (1, Cons (2, Cons (3, Nil)))
Cons (1, Cons (2, Cons (3, Nil)))Function wrapper for fantasy-land/chain.
fantasy-land/chain implementations are provided for the following
built-in types: Array and Function.
> Z.chain (x => [x, x], [1, 2, 3])
[1, 1, 2, 2, 3, 3]
> Z.chain (x => x % 2 == 1 ? Z.of (List, x) : Nil,
. Cons (1, Cons (2, Cons (3, Nil))))
Cons (1, Cons (3, Nil))
> Z.chain (n => s => s.slice (0, n),
. s => Math.ceil (s.length / 2))
. ('Haskell')
'Hask'Removes one level of nesting from a nested monadic structure.
This function is derived from chain.
> Z.join ([[1], [2], [3]])
[1, 2, 3]
> Z.join ([[[1, 2, 3]]])
[[1, 2, 3]]
> Z.join (Identity (Identity (1)))
Identity (1)Function wrapper for fantasy-land/chainRec.
fantasy-land/chainRec implementations are provided for the following
built-in types: Array.
> Z.chainRec (
. Array,
. (next, done, s) => s.length == 2 ? [s + '!', s + '?'].map (done)
. : [s + 'o', s + 'n'].map (next),
. ''
. )
['oo!', 'oo?', 'on!', 'on?', 'no!', 'no?', 'nn!', 'nn?']Function wrapper for fantasy-land/alt.
fantasy-land/alt implementations are provided for the following
built-in types: Array and Object.
> Z.alt ([1, 2, 3], [4, 5, 6])
[1, 2, 3, 4, 5, 6]
> Z.alt (Nothing, Nothing)
Nothing
> Z.alt (Nothing, Just (1))
Just (1)
> Z.alt (Just (2), Just (3))
Just (2)Function wrapper for fantasy-land/zero.
fantasy-land/zero implementations are provided for the following
built-in types: Array and Object.
> Z.zero (Array)
[]
> Z.zero (Object)
{}
> Z.zero (Maybe)
NothingFunction wrapper for fantasy-land/reduce.
fantasy-land/reduce implementations are provided for the following
built-in types: Array and Object.
> Z.reduce ((xs, x) => [x].concat (xs), [], [1, 2, 3])
[3, 2, 1]
> Z.reduce (Z.concat, '', Cons ('foo', Cons ('bar', Cons ('baz', Nil))))
'foobarbaz'
> Z.reduce (Z.concat, '', {foo: 'x', bar: 'y', baz: 'z'})
'yzx'Returns the number of elements of the given structure.
This function is derived from reduce.
> Z.size ([])
0
> Z.size (['foo', 'bar', 'baz'])
3
> Z.size (Nil)
0
> Z.size (Cons ('foo', Cons ('bar', Cons ('baz', Nil))))
3Returns true if all the elements of the structure satisfy the
predicate; false otherwise.
This function is derived from reduce.
> Z.all (Number.isInteger, [])
true
> Z.all (Number.isInteger, [1, 2, 3])
true
> Z.all (Number.isInteger, [0, 0.25, 0.5, 0.75, 1])
falseReturns true if any element of the structure satisfies the predicate;
false otherwise.
This function is derived from reduce.
> Z.any (Number.isInteger, [])
false
> Z.any (Number.isInteger, [1, 2, 3])
true
> Z.any (Number.isInteger, [0, 0.25, 0.5, 0.75, 1])
trueReturns true if none of the elements of the structure satisfies the
predicate; false otherwise.
This function is derived from any. Z.none (pred, foldable) is
equivalent to !(Z.any (pred, foldable)).
See also all.
> Z.none (Number.isInteger, [])
true
> Z.none (Number.isInteger, [0, 0.25, 0.5, 0.75, 1])
falseTakes a value and a structure and returns true if the
value is an element of the structure; false otherwise.
This function is derived from equals and
reduce.
> Z.elem ('c', ['a', 'b', 'c'])
true
> Z.elem ('x', ['a', 'b', 'c'])
false
> Z.elem (3, {x: 1, y: 2, z: 3})
true
> Z.elem (8, {x: 1, y: 2, z: 3})
false
> Z.elem (0, Just (0))
true
> Z.elem (0, Just (1))
false
> Z.elem (0, Nothing)
falseConcatenates the elements of the given structure, separating each pair of adjacent elements with the given separator.
This function is derived from concat, empty,
and reduce.
> Z.intercalate (', ', [])
''
> Z.intercalate (', ', ['foo', 'bar', 'baz'])
'foo, bar, baz'
> Z.intercalate (', ', Nil)
''
> Z.intercalate (', ', Cons ('foo', Cons ('bar', Cons ('baz', Nil))))
'foo, bar, baz'
> Z.intercalate ([0, 0, 0], [])
[]
> Z.intercalate ([0, 0, 0], [[1], [2, 3], [4, 5, 6], [7, 8], [9]])
[1, 0, 0, 0, 2, 3, 0, 0, 0, 4, 5, 6, 0, 0, 0, 7, 8, 0, 0, 0, 9]Deconstructs a foldable by mapping every element to a monoid and concatenating the results.
This function is derived from concat, empty,
and reduce.
> Z.foldMap (String, f => f.name, [Math.sin, Math.cos, Math.tan])
'sincostan'Reverses the elements of the given structure.
This function is derived from concat, empty,
of, and reduce.
> Z.reverse ([1, 2, 3])
[3, 2, 1]
> Z.reverse (Cons (1, Cons (2, Cons (3, Nil))))
Cons (3, Cons (2, Cons (1, Nil)))Performs a stable sort of the elements of the given structure,
using lte for comparisons.
This function is derived from lte, concat,
empty, of, and reduce.
See also sortBy.
> Z.sort (['foo', 'bar', 'baz'])
['bar', 'baz', 'foo']
> Z.sort ([Just (2), Nothing, Just (1)])
[Nothing, Just (1), Just (2)]
> Z.sort (Cons ('foo', Cons ('bar', Cons ('baz', Nil))))
Cons ('bar', Cons ('baz', Cons ('foo', Nil)))Performs a stable sort of the elements of the given structure,
using lte to compare the values produced by applying the
given function to each element of the structure.
This function is derived from lte, concat,
empty, of, and reduce.
See also sort.
> Z.sortBy (s => s.length, ['red', 'green', 'blue'])
['red', 'blue', 'green']
> Z.sortBy (s => s.length, ['black', 'white'])
['black', 'white']
> Z.sortBy (s => s.length, ['white', 'black'])
['white', 'black']
> Z.sortBy (s => s.length, Cons ('red', Cons ('green', Cons ('blue', Nil))))
Cons ('red', Cons ('blue', Cons ('green', Nil)))Function wrapper for fantasy-land/traverse.
fantasy-land/traverse implementations are provided for the following
built-in types: Array and Object.
See also sequence.
> Z.traverse (Array, x => x, [[1, 2, 3], [4, 5]])
[[1, 4], [1, 5], [2, 4], [2, 5], [3, 4], [3, 5]]
> Z.traverse (Identity, x => Identity (x + 1), [1, 2, 3])
Identity ([2, 3, 4])Inverts the given t (f a) to produce an f (t a).
This function is derived from traverse.
> Z.sequence (Array, Identity ([1, 2, 3]))
[Identity (1), Identity (2), Identity (3)]
> Z.sequence (Identity, [Identity (1), Identity (2), Identity (3)])
Identity ([1, 2, 3])Function wrapper for fantasy-land/extend.
fantasy-land/extend implementations are provided for the following
built-in types: Array and Function.
> Z.extend (ss => ss.join (''), ['x', 'y', 'z'])
['xyz', 'yz', 'z']
> Z.extend (f => f ([3, 4]), Z.reverse) ([1, 2])
[4, 3, 2, 1]Adds one level of nesting to a comonadic structure.
This function is derived from extend.
> Z.duplicate (Identity (1))
Identity (Identity (1))
> Z.duplicate ([1])
[[1]]
> Z.duplicate ([1, 2, 3])
[[1, 2, 3], [2, 3], [3]]
> Z.duplicate (Z.reverse) ([1, 2]) ([3, 4])
[4, 3, 2, 1]Function wrapper for fantasy-land/extract.
> Z.extract (Identity (42))
42Function wrapper for fantasy-land/contramap.
fantasy-land/contramap implementations are provided for the following
built-in types: Function.
> Z.contramap (s => s.length, Math.sqrt) ('Sanctuary')
3