You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi all, I am using Seurat V5 and V4 to analyze some scRNA datasets. The result I get from V5 integrateLayer integration method is similar to the result I get after changing DefaultAssay into "RNA" using V4 SelectIntegrationFeatures+ FindIntegrationAnchors+ IntegrateData method. Here is the code and the graph, do anyone have an idea why??
V5
V4(DefaultAssay(data) <- "integrated" )
V4(DefaultAssay(data) <- "RNA" )
V4
data.list <- list(sample1, sample2, sample3)
data.list <- lapply(X = data.list, FUN = function(x) {
x <- NormalizeData(x)
x <- FindVariableFeatures(x, selection.method = "vst", nfeatures = 2000)
})
reacted with thumbs up emoji reacted with thumbs down emoji reacted with laugh emoji reacted with hooray emoji reacted with confused emoji reacted with heart emoji reacted with rocket emoji reacted with eyes emoji
-
Hi all, I am using Seurat V5 and V4 to analyze some scRNA datasets. The result I get from V5 integrateLayer integration method is similar to the result I get after changing DefaultAssay into "RNA" using V4 SelectIntegrationFeatures+ FindIntegrationAnchors+ IntegrateData method. Here is the code and the graph, do anyone have an idea why??
V5

V4(DefaultAssay(data) <- "integrated" )

V4(DefaultAssay(data) <- "RNA" )

V4
data.list <- list(sample1, sample2, sample3)
data.list <- lapply(X = data.list, FUN = function(x) {
x <- NormalizeData(x)
x <- FindVariableFeatures(x, selection.method = "vst", nfeatures = 2000)
})
features <- SelectIntegrationFeatures(object.list = data.list)
data.anchors <- FindIntegrationAnchors(object.list = data.list, anchor.features = features, reduction = "cca")
data.combined <- IntegrateData(anchorset = data.anchors)
DefaultAssay(data.combined) <- "integrated"
data.combined <- ScaleData(data.combined, verbose = FALSE)
data.combined <- RunPCA(data.combined)
seurat_obj_after <- runHarmony(combined,group.by.vars = "Group")
seurat_obj_after_20 <- RunUMAP(seurat_obj_after, reduction = "harmony", dims = 1:20)
seurat_obj_after_20 <- FindNeighbors(seurat_obj_after_05, reduction = "harmony", dims = 1:20)
seurat_obj_after_2009 <- FindClusters(seurat_obj_after_05, resolution = 0.9)
V5
merged_seurat <- merge(x = sample1, y = c(sample2,sample3))
dat <- NormalizeData(merged_seurat)
dat <- FindVariableFeatures(dat, selection.method = "vst", nfeatures = 2000)
dat <- ScaleData(dat, features = rownames(dat))
data.combined_PCA <- RunPCA(dat)
data.combined_integrated <- IntegrateLayers(object = data.combined_PCA, method = HarmonyIntegration,
orig.reduction = "pca", new.reduction = "harmony" ,verbose = T)
data.combined_20 <- FindNeighbors(data.combined_integrated, reduction = "harmony", dims = 1:20)
data.combined_2095 <- FindClusters(data.combined_20, resolution = 0.95)
data.combined_2095 <- RunUMAP(data.combined_2095, reduction = "harmony", dims = 1:20, reduction.name = "umap.harmony")
joined <- joinLayer(data.combined_2095)
Beta Was this translation helpful? Give feedback.
All reactions