It is the Random Forest Regression model of the given data. The data can be found at https://archive.ics.uci.edu/ml/datasets/QSAR+fish+toxicity#
The MSE for the final model is 0.3858783564599372.
This dataset was used to develop quantitative regression QSAR models to predict acute aquatic toxicity towards the fish Pimephales promelas (fathead minnow) on a set of 908 chemicals. LC50 data, which is the concentration that causes death in 50% of test fish over a test duration of 96 hours, was used as model response. The model comprised 6 molecular descriptors: MLOGP (molecular properties), CIC0 (information indices), GATS1i (2D autocorrelations), NdssC (atom-type counts), NdsCH ((atom-type counts), SM1_Dz(Z) (2D matrix-based descriptors). Details can be found in the quoted reference: M. Cassotti, D. Ballabio, R. Todeschini, V. Consonni. A similarity-based QSAR model for predicting acute toxicity towards the fathead minnow (Pimephales promelas), SAR and QSAR in Environmental Research (2015), 26, 217-243; doi: 10.1080/1062936X.2015.1018938