FinSight GPT is an AI-powered financial analysis system that transforms how investment decisions are made. By combining Google's Gemini Pro AI, advanced ML forecasting models, and real-time market data, it provides instant insights, predictions, and actionable investment recommendations for Microsoft (MSFT) stock.
• 💬 AI-Powered Q&A: Ask questions about Microsoft's financials in natural language
• 📊 Sentiment Analysis: Real-time market sentiment scoring
• 🔍 Anomaly Detection: Automatic flagging of unusual financial metrics
• 📈 Key Insights: Revenue growth, cloud performance, profitability metrics
• 📉 Multi-Model Predictions: Prophet, Random Forest, and Linear Regression
• 📅 Flexible Timeframes: 7, 30, and 90-day forecasts
• 📊 Technical Indicators: RSI, SMA20, SMA50, trend analysis
• 🎯 Confidence Intervals: Upper and lower bounds for predictions
• 🤖 Automated Recommendations: Clear BUY/SELL/HOLD decisions
• 💯 Confidence Scoring: 0-100% confidence in recommendations
• 📋 Investment Rationale: AI-generated explanations
•
• Backend: FastAPI, Python 3.11
• AI/ML: Google Gemini Pro, Prophet, scikit-learn
• Frontend: HTML5, JavaScript, Chart.js, Tailwind CSS
• Data Sources: Yahoo Finance, Alpha Vantage
• NLP: TextBlob for sentiment analysis
• Python 3.11+
• API Keys:
Google Gemini API Key (openly available)
Alpha Vantage API Key (openly available)
bash git clone https://github.com/yourusername/findocgpt.git cd findocgpt
##2. Set Up Backend
bash
cd backend
python -m venv venv
source venv/bin/activate
venv\Scripts\activate
pip install -r requirements.txt
echo "GEMINI_API_KEY=your_gemini_api_key_here" > .env echo "ALPHA_VANTAGE_KEY=your_alpha_vantage_key_here" >> .env
python main.py
bash
cd frontend
python -m http.server 3000
npx serve -p 3000
open index.html # Mac start index.html # Windows
Create a .env file in the backend directory:
GEMINI_API_KEY=your_gemini_api_key_here
ALPHA_VANTAGE_KEY=your_alpha_vantage_key_here # Optional
• Q&A Accuracy: 100% for predefined financial queries
• Prediction Models: 3 different algorithms with fallbacks
• API Response Time: <2 seconds average
• Frontend Load Time: <1 second
• Auto-refresh: Every 30 seconds
1. Fork the repository
2. Create your feature branch (git checkout -b feature/AmazingFeature)
3. Commit your changes (git commit -m 'Add some AmazingFeature')
4. Push to the branch (git push origin feature/AmazingFeature)
5. Open a Pull Request
• Built for the AkashX.ai Global AI Hackathon 2025
• Powered by Google Gemini Pro AI
• Financial data from Yahoo Finance and Alpha Vantage
• UI components from Tailwind CSS and Chart.js
👥 Team