Skip to content

Conversation

@m-romanenko
Copy link
Collaborator

@m-romanenko m-romanenko commented Jul 6, 2020

Waiting for #61 to be resolved before merging

@@ -0,0 +1,5 @@
"""Activations layers"""

from .mish import Mish
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Mets un path absolu plutot que relatif

>>> X = Mish()(X_input)
"""

def __init__(self, **kwargs):
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Pas besoin de définir l'init si tu ne fais rien de plus

@click.option(
"--weights_path", default=None, help="Path to .h5 file with model weights"
)
def main(num_classes, weights_path):
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Est-ce que tu peux :

  • ne pas appeler ca main()
  • ajouter dans le setup.py une commande comme c'est fait pour la conversion de poids ? Ca permet d'avoir une CLI quand tu installes la librairie

weights_path (str, optional): Path to .h5 pre-trained weights file
"""
model = YOLOv4(
input_shape=(HEIGHT, WIDTH, 3),
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Height and width are parametrizable, is it an argument stored in the tflite model or is it just used for the conversion? We want to make sure users can proceed the inference on any size

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

3 participants