Skip to content

added hoffman encoding and breadth first search #744

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
71 changes: 71 additions & 0 deletions Searching Algo/bfs.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
#include <bits/stdc++.h>
using namespace std;

class Graph
{
int V;
vector<list<int>> adj;

public:
Graph(int V);
void addEdge(int v, int w);
void BFS(int s);
};

Graph::Graph(int V)
{
this->V = V;
adj.resize(V);
}

void Graph::addEdge(int v, int w)
{
adj[v].push_back(w);
}

void Graph::BFS(int s)
{

vector<bool> visited;
visited.resize(V, false);

list<int> queue;

visited[s] = true;
queue.push_back(s);

while (!queue.empty())
{

s = queue.front();
cout << s << " ";
queue.pop_front();

for (auto adjecent : adj[s])
{
if (!visited[adjecent])
{
visited[adjecent] = true;
queue.push_back(adjecent);
}
}
}
}

int main()
{

Graph g(4);
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(1, 2);
g.addEdge(2, 0);
g.addEdge(2, 3);
g.addEdge(3, 3);

cout << "Following is Breadth First Traversal "
<< "(starting from vertex 2) \n";
g.BFS(2);

return 0;
}
289 changes: 289 additions & 0 deletions Trees Algorithm/hoffman.c
Original file line number Diff line number Diff line change
@@ -0,0 +1,289 @@
#include <stdio.h>
#include <stdlib.h>

// This constant can be avoided by explicitly
// calculating height of Huffman Tree
#define MAX_TREE_HT 100

// A Huffman tree node
struct MinHeapNode
{

// One of the input characters
char data;

// Frequency of the character
unsigned freq;

// Left and right child of this node
struct MinHeapNode *left, *right;
};

// A Min Heap: Collection of
// min-heap (or Huffman tree) nodes
struct MinHeap
{

// Current size of min heap
unsigned size;

// capacity of min heap
unsigned capacity;

// Array of minheap node pointers
struct MinHeapNode **array;
};

// A utility function allocate a new
// min heap node with given character
// and frequency of the character
struct MinHeapNode *newNode(char data, unsigned freq)
{
struct MinHeapNode *temp = (struct MinHeapNode *)malloc(
sizeof(struct MinHeapNode));

temp->left = temp->right = NULL;
temp->data = data;
temp->freq = freq;

return temp;
}

// A utility function to create
// a min heap of given capacity
struct MinHeap *createMinHeap(unsigned capacity)

{

struct MinHeap *minHeap = (struct MinHeap *)malloc(sizeof(struct MinHeap));

// current size is 0
minHeap->size = 0;

minHeap->capacity = capacity;

minHeap->array = (struct MinHeapNode **)malloc(
minHeap->capacity * sizeof(struct MinHeapNode *));
return minHeap;
}

void swapMinHeapNode(struct MinHeapNode **a,
struct MinHeapNode **b)

{
struct MinHeapNode *t = *a;
*a = *b;
*b = t;
}

void minHeapify(struct MinHeap *minHeap, int idx)

{

int smallest = idx;
int left = 2 * idx + 1;
int right = 2 * idx + 2;

if (left < minHeap->size && minHeap->array[left]->freq < minHeap->array[smallest]->freq)
smallest = left;

if (right < minHeap->size && minHeap->array[right]->freq < minHeap->array[smallest]->freq)
smallest = right;

if (smallest != idx)
{
swapMinHeapNode(&minHeap->array[smallest],
&minHeap->array[idx]);
minHeapify(minHeap, smallest);
}
}

int isSizeOne(struct MinHeap *minHeap)
{

return (minHeap->size == 1);
}

struct MinHeapNode *extractMin(struct MinHeap *minHeap)

{

struct MinHeapNode *temp = minHeap->array[0];
minHeap->array[0] = minHeap->array[minHeap->size - 1];

--minHeap->size;
minHeapify(minHeap, 0);

return temp;
}

// A utility function to insert
// a new node to Min Heap
void insertMinHeap(struct MinHeap *minHeap,
struct MinHeapNode *minHeapNode)

{

++minHeap->size;
int i = minHeap->size - 1;

while (i && minHeapNode->freq < minHeap->array[(i - 1) / 2]->freq)
{

minHeap->array[i] = minHeap->array[(i - 1) / 2];
i = (i - 1) / 2;
}

minHeap->array[i] = minHeapNode;
}

// A standard function to build min heap
void buildMinHeap(struct MinHeap *minHeap)

{

int n = minHeap->size - 1;
int i;

for (i = (n - 1) / 2; i >= 0; --i)
minHeapify(minHeap, i);
}

// A utility function to print an array of size n
void printArr(int arr[], int n)
{
int i;
for (i = 0; i < n; ++i)
printf("%d", arr[i]);

printf("\n");
}

// Utility function to check if this node is leaf
int isLeaf(struct MinHeapNode *root)

{

return !(root->left) && !(root->right);
}

// Creates a min heap of capacity
// equal to size and inserts all character of
// data[] in min heap. Initially size of
// min heap is equal to capacity
struct MinHeap *createAndBuildMinHeap(char data[],
int freq[], int size)

{

struct MinHeap *minHeap = createMinHeap(size);

for (int i = 0; i < size; ++i)
minHeap->array[i] = newNode(data[i], freq[i]);

minHeap->size = size;
buildMinHeap(minHeap);

return minHeap;
}

// The main function that builds Huffman tree
struct MinHeapNode *buildHuffmanTree(char data[],
int freq[], int size)

{
struct MinHeapNode *left, *right, *top;

// Step 1: Create a min heap of capacity
// equal to size. Initially, there are
// modes equal to size.
struct MinHeap *minHeap = createAndBuildMinHeap(data, freq, size);

// Iterate while size of heap doesn't become 1
while (!isSizeOne(minHeap))
{

// Step 2: Extract the two minimum
// freq items from min heap
left = extractMin(minHeap);
right = extractMin(minHeap);

// Step 3: Create a new internal
// node with frequency equal to the
// sum of the two nodes frequencies.
// Make the two extracted node as
// left and right children of this new node.
// Add this node to the min heap
// '$' is a special value for internal nodes, not
// used
top = newNode('$', left->freq + right->freq);

top->left = left;
top->right = right;

insertMinHeap(minHeap, top);
}

// Step 4: The remaining node is the
// root node and the tree is complete.
return extractMin(minHeap);
}

// Prints huffman codes from the root of Huffman Tree.
// It uses arr[] to store codes
void printCodes(struct MinHeapNode *root, int arr[],
int top)

{

// Assign 0 to left edge and recur
if (root->left)
{

arr[top] = 0;
printCodes(root->left, arr, top + 1);
}

// Assign 1 to right edge and recur
if (root->right)
{

arr[top] = 1;
printCodes(root->right, arr, top + 1);
}

// If this is a leaf node, then
// it contains one of the input
// characters, print the character
// and its code from arr[]
if (isLeaf(root))
{

printf("%c: ", root->data);
printArr(arr, top);
}
}

void HuffmanCodes(char data[], int freq[], int size)

{

struct MinHeapNode *root = buildHuffmanTree(data, freq, size);

int arr[MAX_TREE_HT], top = 0;

printCodes(root, arr, top);
}

int main()
{

char arr[] = {'a', 'b', 'c', 'd', 'e', 'f'};
int freq[] = {5, 9, 12, 13, 16, 45};

int size = sizeof(arr) / sizeof(arr[0]);

HuffmanCodes(arr, freq, size);

return 0;
}