Skip to content

sidequery/sidemantic

Sidemantic

SQL-first semantic layer for consistent metrics across your data stack. Import from Cube, dbt MetricFlow, LookML, Hex, Rill, Superset, and Omni. Supports DuckDB, MotherDuck, PostgreSQL, BigQuery, Snowflake, ClickHouse, Databricks, and Spark SQL.

DocumentationGitHub

Features

  • SQL query interface: Write familiar SQL that gets rewritten to use semantic layer
  • Automatic joins: Define relationships, joins happen automatically via graph traversal
  • Multi-format adapters: Import from 8 semantic layer formats (Cube, dbt, Looker, Hex, and more)
  • SQLGlot-powered: Dialect-agnostic SQL generation with transpilation support
  • Type-safe: Pydantic models with validation
  • Pre-aggregations: Automatic query routing to materialized rollups
  • Predicate pushdown: Filters pushed into CTEs for improved performance
  • Segments: Reusable named filters with template placeholders
  • Metric-level filters: Auto-applied filters for consistent business logic
  • Jinja2 templating: Conditional logic and loops in SQL
  • Inheritance: Extend models and metrics
  • Hierarchies: Parent/child dimensions with drill-down API
  • Relative dates: Natural language like "last 7 days", "this month"
  • Ungrouped queries: Raw row access without aggregation
  • Multi-hop joins: Automatic 2+ hop join discovery

Metric Types

  • Aggregations: sum, avg, count, count_distinct, min, max
  • Ratios: revenue / order_count
  • Derived formulas: (revenue - cost) / revenue
  • Cumulative: running totals, rolling windows
  • Time comparisons: YoY, MoM, WoW with LAG window functions
  • Conversion funnels: signup → purchase rate

Supported Formats

Import semantic models from:

  • Sidemantic (native)
  • Cube
  • MetricFlow (dbt)
  • LookML (Looker)
  • Hex
  • Rill
  • Superset (Apache)
  • Omni

See the Adapter Compatibility section for detailed feature support.

CLI

Sidemantic includes powerful CLI tools for working with your semantic layer:

Sidequery Workbench

Interactive workbench for exploring and querying your semantic layer:

# Try the demo (no setup required!)
uvx sidemantic workbench --demo

# Or with your own models
sidemantic workbench semantic_models/

Features:

  • Tree browser with hover tooltips showing full metadata
  • Tabbed SQL editor with syntax highlighting and 4 example queries
  • Table and chart views with automatic axis selection for time-series
  • Chart types: Bar, Line, and Scatter plots
  • Keyboard shortcuts: Ctrl+R to run, Ctrl+C to quit
  • Demo mode: Try it instantly with --demo flag (includes sample data from multiple formats)

Query Command

Execute SQL queries from the command line and get CSV output:

# Query to stdout
sidemantic query examples/multi_format_demo/ --sql "SELECT orders.total_revenue, customers.region FROM orders"

# Query to file
sidemantic query examples/multi_format_demo/ -q "SELECT orders.total_revenue FROM orders" -o results.csv

# Pipe to other tools
sidemantic query examples/multi_format_demo/ -q "SELECT * FROM orders" | head -5

Perfect for:

  • Shell scripts and automation
  • Piping to other tools (jq, csvkit, etc.)
  • Generating reports
  • CI/CD workflows

PostgreSQL Server

Expose your semantic layer over the PostgreSQL wire protocol:

# Start server (demo mode)
sidemantic serve --demo

# Start with your models
sidemantic serve semantic_models/ --port 5433

# With authentication
sidemantic serve semantic_models/ --username admin --password secret

Connect with any PostgreSQL client:

psql -h 127.0.0.1 -p 5433 -U admin -d sidemantic

Note: Requires pip install sidemantic[serve]

Perfect for:

  • BI tools (Tableau, Power BI, Looker, Metabase)
  • SQL clients (DBeaver, DataGrip, pgAdmin)
  • Python libraries (psycopg2, SQLAlchemy)
  • Any PostgreSQL-compatible tool

Other Commands

# Validate all definitions
sidemantic validate semantic_models/

# Quick info
sidemantic info semantic_models/

# MCP server for AI integration
sidemantic mcp-serve semantic_models/

Quick Start

Sidemantic supports three definition syntaxes: YAML, SQL, and Python. Choose your preference!

Define your semantic layer

YAML:

# semantic_layer.yml
models:
  - name: orders
    table: orders
    primary_key: order_id
    relationships:
      - name: customer
        type: many_to_one
        foreign_key: customer_id
    dimensions:
      - name: status
        type: categorical
        sql: status
      - name: order_date
        type: time
        sql: created_at
        granularity: day
    metrics:
      - name: revenue
        agg: sum
        sql: amount
      - name: order_count
        agg: count

metrics:
  - name: total_revenue
    sql: orders.revenue

SQL:

-- semantic_layer.sql
MODEL (name orders, table orders, primary_key order_id);

RELATIONSHIP (name customer, type many_to_one, foreign_key customer_id);

DIMENSION (name status, type categorical, sql status);
DIMENSION (name order_date, type time, sql created_at, granularity day);

METRIC (name revenue, agg sum, sql amount);
METRIC (name order_count, agg count);

Python:

from sidemantic import SemanticLayer, Model, Dimension, Metric, Relationship

layer = SemanticLayer()
orders = Model(
    name="orders",
    table="orders",
    primary_key="order_id",
    relationships=[Relationship(name="customer", type="many_to_one", foreign_key="customer_id")],
    dimensions=[
        Dimension(name="status", type="categorical", sql="status"),
        Dimension(name="order_date", type="time", sql="created_at", granularity="day"),
    ],
    metrics=[
        Metric(name="revenue", agg="sum", sql="amount"),
        Metric(name="order_count", agg="count"),
    ]
)
layer.add_model(orders)

Query with SQL

from sidemantic import SemanticLayer

# Load semantic layer
layer = SemanticLayer.from_yaml("semantic_layer.yml")

# Query with familiar SQL - automatically rewritten
result = layer.sql("""
    SELECT revenue, status
    FROM orders
    WHERE status = 'completed'
""")

df = result.fetchdf()
Alternative: Python API
from sidemantic import SemanticLayer, Model, Metric, Dimension, Relationship

layer = SemanticLayer()

orders = Model(
    name="orders",
    table="orders",
    primary_key="order_id",
    relationships=[
        Relationship(name="customer", type="many_to_one", foreign_key="customer_id")
    ],
    dimensions=[
        Dimension(name="status", type="categorical", sql="status"),
        Dimension(name="order_date", type="time", sql="created_at", granularity="day"),
    ],
    metrics=[
        Metric(name="revenue", agg="sum", sql="amount"),
        Metric(name="order_count", agg="count"),
    ]
)
layer.add_model(orders)

# Programmatic query
result = layer.query(
    metrics=["orders.revenue"],
    dimensions=["orders.status"],
    filters=["orders.status = 'completed'"]
)
df = result.fetchdf()

Editor Support

Generate JSON Schema for autocomplete in VS Code, IntelliJ, etc:

uv run python -m sidemantic.schema

Add to your YAML files:

# yaml-language-server: $schema=./sidemantic-schema.json

Loading From Multiple Formats

The easiest way to load semantic models from any format:

from sidemantic import SemanticLayer, load_from_directory

# Point at a directory with mixed formats (Cube, LookML, Hex, MetricFlow, etc.)
layer = SemanticLayer(connection="duckdb:///data.db")
load_from_directory(layer, "semantic_models/")

# That's it! Automatically:
# - Discovers all semantic layer files
# - Detects format (Cube, Hex, LookML, MetricFlow, Sidemantic)
# - Parses with the right adapter
# - Infers relationships from foreign key naming (customer_id -> customers)
# - Ready to query!

result = layer.query(
    metrics=["orders.revenue"],
    dimensions=["customers.region"]
)

Manual Adapter Usage

For more control, you can use adapters directly:

from sidemantic.adapters.cube import CubeAdapter
from sidemantic.adapters.metricflow import MetricFlowAdapter
from sidemantic.adapters.sidemantic import SidemanticAdapter

# From Cube
cube_adapter = CubeAdapter()
graph = cube_adapter.parse("cube_schema.yml")

# From MetricFlow (dbt)
mf_adapter = MetricFlowAdapter()
graph = mf_adapter.parse("semantic_models.yml")

# From native Sidemantic
native_adapter = SidemanticAdapter()
graph = native_adapter.parse("semantic_layer.yml")

Advanced Features

Complex Metrics

Define ratios, formulas, cumulative metrics with automatic dependency detection:

models:
  - name: orders
    table: orders
    primary_key: order_id

    metrics:
      # Model-level aggregations
      - name: revenue
        agg: sum
        sql: amount

      - name: completed_revenue
        agg: sum
        sql: amount
        filters: ["status = 'completed'"]

# Graph-level metrics
metrics:
  # Simple reference (dependencies auto-detected)
  - name: total_revenue
    sql: orders.revenue

  # Ratio
  - name: conversion_rate
    type: ratio
    numerator: orders.completed_revenue
    denominator: orders.revenue

  # Derived (dependencies auto-detected from formula!)
  - name: profit_margin
    type: derived
    sql: "(revenue - cost) / revenue"

  # Cumulative
  - name: running_total
    type: cumulative
    sql: orders.revenue
    window: "7 days"
Python alternative
Metric(name="total_revenue", sql="orders.revenue")

Metric(name="conversion_rate", type="ratio",
       numerator="orders.completed_revenue",
       denominator="orders.revenue")

Metric(name="profit_margin", type="derived",
       sql="(revenue - cost) / revenue")

Metric(name="running_total", type="cumulative",
       sql="orders.revenue", window="7 days")

Automatic Joins

Define relationships once, query across models:

models:
  - name: orders
    table: orders
    primary_key: order_id
    relationships:
      - name: customer
        type: many_to_one
        foreign_key: customer_id

  - name: customers
    table: customers
    primary_key: customer_id
    relationships:
      - name: region
        type: many_to_one
        foreign_key: region_id

Query spans 2 hops automatically:

# Automatically joins orders -> customers -> regions
result = layer.sql("""
    SELECT orders.revenue, regions.region_name
    FROM orders
""")

Relationship Types

  • many_to_one: Many records in THIS table → one record in OTHER table (e.g., orders → customer)
  • one_to_many: One record in THIS table → many records in OTHER table (e.g., customer → orders)
  • one_to_one: One record in THIS table → one record in OTHER table (e.g., order → invoice)

Feature Examples

Segments - Reusable Filters

models:
  - name: orders
    segments:
      - name: completed
        sql: "{model}.status = 'completed'"
        description: "Only completed orders"
      - name: high_value
        sql: "{model}.amount > 100"

# Use in queries
layer.compile(metrics=["orders.revenue"], segments=["orders.completed"])

Metric-Level Filters

metrics:
  - name: completed_revenue
    agg: sum
    sql: amount
    filters: ["{model}.status = 'completed'"]  # Auto-applied!

Jinja2 Templates

metrics:
  - name: taxed_revenue
    agg: sum
    sql: "{% if include_tax %}amount * 1.1{% else %}amount{% endif %}"

# Use with parameters
layer.compile(metrics=["orders.taxed_revenue"], parameters={"include_tax": True})

Inheritance

models:
  - name: base_sales
    table: sales
    dimensions: [...]

  - name: filtered_sales
    extends: base_sales  # Inherits all dimensions!
    segments: [...]

Hierarchies & Drill-Down

# Define hierarchy
Dimension(name="country", type="categorical")
Dimension(name="state", type="categorical", parent="country")
Dimension(name="city", type="categorical", parent="state")

# Navigate hierarchy
model.get_hierarchy_path("city")  # ['country', 'state', 'city']
model.get_drill_down("country")   # 'state'
model.get_drill_up("city")        # 'state'

Relative Dates

# Natural language date filters
layer.compile(
    metrics=["orders.revenue"],
    filters=["orders_cte.created_at >= 'last 7 days'"]
)
# Auto-converts to: created_at >= CURRENT_DATE - 7

# Supports: "last N days/weeks/months", "this/last/next month/quarter/year", "today", etc.

Ungrouped Queries

# Get raw rows without aggregation (for detail views)
sql = layer.compile(
    metrics=["orders.revenue"],
    dimensions=["orders.customer_id"],
    ungrouped=True  # Returns raw rows
)

Adapter Compatibility

Supported Formats

Format Import Notes
Sidemantic (native) Full feature support
Cube No native segments
MetricFlow (dbt) No native segments or hierarchies
LookML (Looker) Liquid templating (not Jinja)
Hex No segments or cross-model derived metrics
Rill No relationships, segments, or cross-model metrics; single-model only
Superset (Apache) No relationships in datasets
Omni Relationships in separate model file

Feature Compatibility

This table shows which Sidemantic features are supported when importing from other formats:

Feature Sidemantic Cube MetricFlow LookML Hex Rill Superset Omni Notes
Models All formats support models/tables
Dimensions All formats support dimensions
Simple Metrics All formats support sum, count, avg, min, max
Time Dimensions All formats support time dimensions with granularity
Relationships Rill/Superset: single-model only; Omni: in model file
Derived Metrics All formats support calculated metrics
Metric Filters ⚠️ Rill has basic support; Superset lacks filters
Ratio Metrics Rill/Superset don't have native ratio metric type
Segments Only Cube and LookML have native segment support
Cumulative Metrics Cube has rolling_window; MetricFlow has cumulative; others lack native support
Time Comparison Only MetricFlow has native time comparison metrics
Jinja Templates ⚠️ LookML uses Liquid templating
Hierarchies ⚠️ ⚠️ ⚠️ Cube/LookML/Omni: via drill_fields
Inheritance Only LookML has native extends support
Metadata Fields ⚠️ ⚠️ ⚠️ ⚠️ ⚠️ Label and description support varies by format
Parameters Sidemantic-only feature
Ungrouped Queries Sidemantic-only feature

Legend:

  • ✅ Full support - feature fully supported on import
  • ⚠️ Partial support - feature works with limitations
  • ❌ Not supported - feature not available in source format

Database Support

Sidemantic supports multiple production-ready databases:

Database Status Installation
DuckDB Built-in (default)
MotherDuck Built-in (cloud DuckDB)
PostgreSQL pip install sidemantic[postgres]
BigQuery pip install sidemantic[bigquery]
Snowflake pip install sidemantic[snowflake]
ClickHouse pip install sidemantic[clickhouse]
Databricks pip install sidemantic[databricks]
Spark SQL pip install sidemantic[spark]

Connection examples:

# DuckDB (default)
connection: duckdb:///data.duckdb

# MotherDuck (cloud DuckDB - requires MOTHERDUCK_TOKEN env var)
connection: duckdb://md:database_name

# PostgreSQL
connection: postgres://user:pass@localhost:5432/analytics

# BigQuery
connection: bigquery://project-id/dataset-id

# Snowflake
connection: snowflake://user:pass@account/database/schema?warehouse=wh

# ClickHouse
connection: clickhouse://user:pass@localhost:8123/default

# Databricks
connection: databricks://token@server/http-path?catalog=main

# Spark SQL
connection: spark://localhost:10000/default

See the documentation for complete connection string formats and features.

Status

  • SQL query interface with automatic rewriting
  • Core semantic layer with SQLGlot generation
  • Relationship-based automatic joins (many_to_one, one_to_many, one_to_one)
  • Multi-hop join discovery
  • Derived metrics with automatic dependency detection
  • Cumulative metrics (running totals, rolling windows)
  • Conversion funnel metrics
  • Time comparison metrics (YoY, MoM, WoW)
  • Segments (reusable filters)
  • Metric-level filters
  • Jinja2 templating
  • Model and metric inheritance
  • Hierarchies with drill-down API
  • Relative date parsing
  • Ungrouped queries (raw row access)
  • Metadata fields (format, drill_fields, non-additivity, defaults)
  • Native YAML format
  • Adapters for 8 semantic layer formats (Cube, MetricFlow, LookML, Hex, Rill, Superset, Omni)
  • DuckDB integration
  • Pre-aggregations with automatic query routing
  • Predicate pushdown with SQLGlot parsing
  • PostgreSQL wire protocol server for broader client compatibility

Roadmap

  • Pre-aggregation materialization and refresh scheduling
  • Additional database engine support (Postgres, MySQL, Snowflake, BigQuery, etc.)
  • REST API endpoints for HTTP-based queries

Examples

See examples/ directory:

  • sql_query_example.py - SQL query interface demonstration
  • basic_example.py - Core usage patterns
  • sidemantic/orders.yml - Native YAML example
  • cube/orders.yml - Cube format example
  • metricflow/semantic_models.yml - MetricFlow format example

Testing

Run tests:

uv run pytest -v