2025.2.08🚀 Released the paper arXiv.2025.2.04🚀 Released the codebase.
| Model Series | Model Name | Parameters | Architecture |
|---|---|---|---|
| LLaVA | LLaVA-v1.6-34B | 34B | Vision-Language |
| LLaVA-v1.6-13B | 13B | Vision-Language | |
| LLaVA-v1.6-7B | 7B | Vision-Language | |
| Lightweight | MoE-LLaVA-Phi2 | 2.7B | Vision-Language |
| MobileVLM-v2 | 7B | Vision-Language | |
| Other VLMs | mPLUG-Owl2 | 7B | Vision-Language |
| Qwen-VL-Chat | 7B | Vision-Language | |
| Yi-VL | 6B | Vision-Language | |
| CogAgent-VQA | 7B | Vision-Language |
| Model Series | Model Name | Parameters | Architecture |
|---|---|---|---|
| Yi | Yi-34B | 34B | Language |
| Qwen | Qwen-14B | 14B | Language |
| Qwen-7B | 7B | Language | |
| Llama-2 | Llama-2-13B | 13B | Language |
| Llama-2-7B | 7B | Language |
- Hallucination Detection: Up to 22.19% improvement in AUROC
- Uncertainty Estimation: 21.17% boost in uncertainty-guided selective generation (AUARC)
- Calibration: 70-85% reduction in calibration error
- Coverage: Consistently meets 90% coverage target while reducing prediction set size
- for detailed results, please refer to the paper.
6 groups of models could be launch from one environment: LLaVa, CogVLM, Yi-VL, Qwen-VL, internlm-xcomposer, MoE-LLaVA. This environment could be created by the following code:
python3 -m venv venv
source venv/bin/activate
pip install git+https://github.com/haotian-liu/LLaVA.git
pip install git+https://github.com/PKU-YuanGroup/MoE-LLaVA.git --no-deps
pip install deepspeed==0.9.5
pip install -r requirements.txt
pip install xformers==0.0.23 --no-depsmPLUG-Owl model can be launched from the following environment:
python3 -m venv venv_mplug
source venv_mplug/bin/activate
git clone https://github.com/X-PLUG/mPLUG-Owl.git
cd mPLUG-Owl/mPLUG-Owl2
git checkout 74f6be9f0b8d42f4c0ff9142a405481e0f859e5c
pip install -e .
pip install git+https://github.com/haotian-liu/LLaVA.git --no-deps
cd ../../
pip install -r requirements.txtMonkey models can be launched from the following environment:
python3 -m venv venv_monkey
source venv_monkey/bin/activate
git clone https://github.com/Yuliang-Liu/Monkey.git
cd ./Monkey
pip install -r requirements.txt
pip install git+https://github.com/haotian-liu/LLaVA.git --no-deps
cd ../
pip install -r requirements.txtTo check all models you can run scripts/test_model_logits.sh
To work with Yi-VL:
apt-get install git-lfs
cd ../
git clone https://huggingface.co/01-ai/Yi-VL-6BTo get model logits in four benchmarks run command from scripts/run.sh.
bash scripts/train_all_models.shbash scripts/evaluate_policies.sh