A local-first, open-source music generation studio — aiming to be the AUTOMATIC1111 for music.
BeatBunny wraps HeartMuLa-oss-3B into a simple web UI so you can generate songs from lyrics + tags on your own GPU workstation.
MVP0 Focus: Stable local runs, clear outputs, easy debugging.
No hosting, no accounts, no business logic.
- Local Gradio Web UI: Simple, clean interface running on localhost.
- Lyrics & Tags: Input lyrics with sections (
[Verse],[Chorus]) and style tags. - Generation Controls: Tuning for CFG, Temperature, Top-K, and Length.
- Persistence:
- SQLite DB: Tracks all jobs, parameters, and results (
beatbunny.db). - Filesystem: Audio and metadata saved to
outputs/job_<id>/.
- SQLite DB: Tracks all jobs, parameters, and results (
- History: Recall settings from previous runs instantly.
- Artifacts: Download WAV, MP3 (if ffmpeg available), and JSON metadata.
- NVIDIA GPU (Required for MVP0)
- VRAM: 8GB minimum recommended (12GB+ for longer generations).
- Disk: ~10GB for model weights + space for outputs.
- Python 3.10 (Required - heartlib pins torch==2.4.1 which is not available for Python 3.11+)
- Git
- ffmpeg (Optional, for MP3 conversion)
- CUDA 12.4+ drivers (for GPU support)
git clone https://github.com/yourusername/beatbunny.git
cd beatbunny
# Create virtual environment
python -m venv .venv
source .venv/bin/activate # Linux/Mac
# .venv\Scripts\activate # Windowspip install -r requirements.txt
# IMPORTANT: After installing heartlib, you must reinstall PyTorch with CUDA support
# heartlib installs CPU-only torch by default
pip install torch==2.4.1 torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124Note: Use CUDA 12.4 index for torch 2.4.1. For other versions, visit pytorch.org.
BeatBunny requires the HeartMuLa-oss-3B model weights.
- Download the weights from the upstream source (e.g., HuggingFace).
- Place them in a folder, for example:
models/HeartMuLa-oss-3B.
Copy the example environment file:
cp .env.example .envEdit .env to point to your model directory:
# .env
MODEL_DIR=./models/HeartMuLa-oss-3B
OUTPUT_DIR=./outputspython app.pyOpen the link displayed in your terminal (usually http://127.0.0.1:7860).
BeatBunny cannot find your GPU.
- Run this check:
python -c "import torch; print(torch.cuda.is_available())" - If
False, verify you have the CUDA-enabled torch:python -c "import torch; print(torch.__version__)"- Should show
2.4.1+cu124(not2.4.1+cpu) - If CPU-only, reinstall:
pip install torch==2.4.1 --index-url https://download.pytorch.org/whl/cu124
- Should show
The generation is too large for your VRAM.
- Reduce Duration (e.g., 60s → 30s).
- Reduce CFG Scale.
- Close other GPU-intensive applications (games, other models).
If you see ModuleNotFoundError: No module named 'heartmula', ensure you have the model's supporting libraries installed or included in your PYTHONPATH.
MIT (Code) / Upstream License (Model Weights)