Skip to content

v.2.3.2

Compare
Choose a tag to compare
@etduwx etduwx released this 06 Apr 05:34
· 652 commits to master since this release
  • Support for Spark 2.3.
  • truncate_columns can be passed along with other parameters for use in the COPY Dataframe write to Snowflake.
    If set to true, TRUCATECOLUMNS will be true in the load statement.
  • Support for column-mapping. Columns may be written out-of-order, or to an arbitrary set of equal quantity, type-compatible columns from a Dataframe to a Snowflake table. Example:
    df.write.format(SNOWFLAKE_SOURCE_NAME).options(connectorOptionsNoTable)
      .option("dbtable", dbtable)
      .option("columnmap", Map("one" -> "sf_col2", "two" -> "sf_col1").toString())
      .mode(SaveMode.Append).save()

will write column "one" of the Spark Dataframe to a "sf_col2" and a column "two" of the Dataframe to a "sf_col1" in the target Snowflake table.