v.2.3.2
- Support for Spark 2.3.
truncate_columns
can be passed along with other parameters for use in the COPY Dataframe write to Snowflake.
If set totrue
, TRUCATECOLUMNS will be true in the load statement.- Support for column-mapping. Columns may be written out-of-order, or to an arbitrary set of equal quantity, type-compatible columns from a Dataframe to a Snowflake table. Example:
df.write.format(SNOWFLAKE_SOURCE_NAME).options(connectorOptionsNoTable)
.option("dbtable", dbtable)
.option("columnmap", Map("one" -> "sf_col2", "two" -> "sf_col1").toString())
.mode(SaveMode.Append).save()
will write column "one" of the Spark Dataframe to a "sf_col2" and a column "two" of the Dataframe to a "sf_col1" in the target Snowflake table.