Skip to content

Deep learning for Cosmological Heterogeneity and Astrophysical Reconstruction via Tomography

Notifications You must be signed in to change notification settings

soumak-maitra/DeepCHART

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

11 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

DeepCHART

Deep learning for Cosmological Heterogeneity and Astrophysical Reconstruction via Tomography

This project implements a 3D tomographic reconstruction pipeline using Ly(\alpha) forest skewers and galaxy positions as input to reconstruct the dark matter (DM) density field. It is built using PyTorch and leverages a variational autoencoder (VAE) with a U-Net-based 3D convolutional neural network.


πŸ“¦ Project Structure

DeepCHART/
β”œβ”€β”€ config.py              # Configuration for training, model, and paths
β”œβ”€β”€ dataset.py             # Custom PyTorch Dataset class for tau, galaxy, DM
β”œβ”€β”€ model.py               # 3D VAE-UNet model with anisotropic kernels
β”œβ”€β”€ train.py               # Training pipeline
└── README.md              # Project description

🧠 Core Features

  • Two-channel input: sparse Ly(\alpha) forest and galaxy CIC fields
  • Output: log-scaled 3D dark matter density
  • Anisotropic volume support: reconstructs volumes of shape (N_\text{section} \times N_\text{section} \times Z_\text{section})
  • Realistic noise model: SNR-based Gaussian noise injection in the flux
  • Modular VAE-UNet: residual blocks, skip connections, and latent sampling

πŸ“ Volume Specifications

  • Input & output volumes are extracted as:
    shape = (N_SECTION, N_SECTION, Z_SECTION)  # typically 96 x 96 x 288
  • Sliced from parent cubes of size N = 128 (configurable)

πŸš€ Getting Started

1. Configure your setup

Edit config.py to set:

  • Data paths
  • Network hyperparameters
  • Volume shape (N_SECTION, Z_SECTION)
  • SNR distribution and augmentation parameters

2. Run training

python train.py

3. Outputs

  • Model checkpoint: model_tomography_...pth
  • Training log: Output_F_galaxy_DM_...txt
  • Loss plot: training_history.png

πŸ”§ Requirements

Minimal requirements :

numpy
scipy
torch
matplotlib

πŸ“„ Citation

If you use this code, please consider citing:

Maitra et al. 2025, DeepCHART: Mapping the 3D dark matter density field from LyΞ± forest surveys using deep learning, arXiv:2507.00135


About

Deep learning for Cosmological Heterogeneity and Astrophysical Reconstruction via Tomography

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages