Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
129 changes: 129 additions & 0 deletions lib/node_modules/@stdlib/stats/base/ndarray/meanors/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,129 @@
<!--

@license Apache-2.0

Copyright (c) 2025 The Stdlib Authors.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

# meanors

> Compute the [arithmetic mean][arithmetic-mean] of a one-dimensional ndarray using ordinary recursive summation.

<section class="intro">

The [arithmetic mean][arithmetic-mean] is defined as

<!-- <equation class="equation" label="eq:arithmetic_mean" align="center" raw="\mu = \frac{1}{n} \sum_{i=0}^{n-1} x_i" alt="Equation for the arithmetic mean."> -->

```math
\mu = \frac{1}{n} \sum_{i=0}^{n-1} x_i
```

<!-- <div class="equation" align="center" data-raw-text="\mu = \frac{1}{n} \sum_{i=0}^{n-1} x_i" data-equation="eq:arithmetic_mean">
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@develop/lib/node_modules/%40stdlib/stats/base/ndarray/meanors/docs/img/equation_arithmetic_mean.svg" alt="Equation for the arithmetic mean.">
<br>
</div> -->

<!-- </equation> -->

</section>

<!-- /.intro -->

<section class="usage">

## Usage

```javascript
var meanors = require( '@stdlib/stats/base/ndarray/meanors' );
```

#### meanors( arrays )

Computes the [arithmetic mean][arithmetic-mean] of a one-dimensional ndarray using ordinary recursive summation.

```javascript
var ndarray = require( '@stdlib/ndarray/base/ctor' );

var xbuf = [ 1.0, 3.0, 4.0, 2.0 ];
var x = new ndarray( 'generic', xbuf, [ 4 ], [ 1 ], 0, 'row-major' );

var v = meanors( [ x ] );
// returns 2.5
```

The function has the following parameters:

- **arrays**: array-like object containing a one-dimensional input ndarray.

</section>

<!-- /.usage -->

<section class="notes">

## Notes

- If provided an empty one-dimensional ndarray, the function returns `NaN`.
- Ordinary recursive summation (i.e., "simple" summation) is performant, but can incur significant numerical error. If performance is paramount and error tolerated, using ordinary recursive summation to compute the arithmetic mean is acceptable; in all other cases, exercise due caution.

</section>

<!-- /.notes -->

<section class="examples">

## Examples

<!-- eslint-disable no-console -->

```javascript
var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var ndarray = require( '@stdlib/ndarray/base/ctor' );
var ndarray2array = require( '@stdlib/ndarray/to-array' );
var meanors = require( '@stdlib/stats/base/ndarray/meanors' );

var xbuf = discreteUniform( 10, -50, 50, {
'dtype': 'generic'
});
var x = new ndarray( 'generic', xbuf, [ xbuf.length ], [ 1 ], 0, 'row-major' );
console.log( ndarray2array( x ) );

var v = meanors( [ x ] );
console.log( v );
```

</section>

<!-- /.examples -->

<!-- Section for related `stdlib` packages. Do not manually edit this section, as it is automatically populated. -->

<section class="related">

</section>

<!-- /.related -->

<!-- Section for all links. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->

<section class="links">

[arithmetic-mean]: https://en.wikipedia.org/wiki/Arithmetic_mean

</section>

<!-- /.links -->
Original file line number Diff line number Diff line change
@@ -0,0 +1,102 @@
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

'use strict';

// MODULES //

var bench = require( '@stdlib/bench' );
var uniform = require( '@stdlib/random/array/uniform' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var pow = require( '@stdlib/math/base/special/pow' );
var ndarray = require( '@stdlib/ndarray/base/ctor' );
var pkg = require( './../package.json' ).name;
var meanors = require( './../lib' );


// VARIABLES //

var options = {
'dtype': 'generic'
};


// FUNCTIONS //

/**
* Creates a benchmark function.
*
* @private
* @param {PositiveInteger} len - array length
* @returns {Function} benchmark function
*/
function createBenchmark( len ) {
var xbuf;
var x;

xbuf = uniform( len, -10.0, 10.0, options );
x = new ndarray( options.dtype, xbuf, [ len ], [ 1 ], 0, 'row-major' );

return benchmark;

function benchmark( b ) {
var v;
var i;

b.tic();
for ( i = 0; i < b.iterations; i++ ) {
v = meanors( [ x ] );
if ( isnan( v ) ) {
b.fail( 'should not return NaN' );
}
}
b.toc();
if ( isnan( v ) ) {
b.fail( 'should not return NaN' );
}
b.pass( 'benchmark finished' );
b.end();
}
}


// MAIN //

/**
* Main execution sequence.
*
* @private
*/
function main() {
var len;
var min;
var max;
var f;
var i;

min = 1; // 10^min
max = 6; // 10^max

for ( i = min; i <= max; i++ ) {
len = pow( 10, i );
f = createBenchmark( len );
bench( pkg+':len='+len, f );
}
}

main();
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
32 changes: 32 additions & 0 deletions lib/node_modules/@stdlib/stats/base/ndarray/meanors/docs/repl.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@

{{alias}}( arrays )
Computes the arithmetic mean of a one-dimensional ndarray using ordinary
recursive summation.

If provided an empty ndarray, the function returns `NaN`.

Parameters
----------
arrays: ArrayLikeObject<ndarray>
Array-like object containing a one-dimensional input ndarray.

Returns
-------
out: number
Arithmetic mean.

Examples
--------
> var xbuf = [ 1.0, -2.0, 2.0 ];
> var dt = 'generic';
> var sh = [ xbuf.length ];
> var sx = [ 1 ];
> var ox = 0;
> var ord = 'row-major';
> var x = new {{alias:@stdlib/ndarray/ctor}}( dt, xbuf, sh, sx, ox, ord );
> {{alias}}( [ x ] )
~0.3333

See Also
--------

Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
/*
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

// TypeScript Version: 4.1

/// <reference types="@stdlib/types"/>

import { ndarray } from '@stdlib/types/ndarray';

/**
* Computes the arithmetic mean of a one-dimensional ndarray using ordinary recursive summation.
*
* @param arrays - array-like object containing an input ndarray
* @returns arithmetic mean
*
* @example
* var ndarray = require( '@stdlib/ndarray/base/ctor' );
*
* var xbuf = [ 1.0, 3.0, 4.0, 2.0 ];
* var x = new ndarray( 'generic', xbuf, [ 4 ], [ 1 ], 0, 'row-major' );
*
* var v = meanors( [ x ] );
* // returns 2.5
*/
declare function meanors<T extends ndarray = ndarray>( arrays: [ T ] ): number;


// EXPORTS //

export = meanors;
Loading