Skip to content

stratosphereips/ml-explorer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

🚀 ML Explorer

A Streamlit app to explore classification and anomaly-detection pipelines on synthetic datasets! 🧪

image

🔍 Features

  • Synthetic Data Generators:

    • make_classification, make_moons, make_circles, make_blobs, make_gaussian_quantiles
  • Feature Selection: VarianceThreshold, SelectKBest (ANOVA F-test, Mutual Information), tree-based importance

  • Dimensionality Reduction: PCA, Kernel PCA, UMAP

  • Scaling: StandardScaler, MinMaxScaler, RobustScaler

  • Classification & Anomaly Detection:

    • Logistic Regression, SVM, k-NN, Decision Trees, Random/Extra Forests, AdaBoost, GradientBoosting, Bagging, GaussianNB, QDA, MLP, SGD, Passive-Aggressive
    • IsolationForest, One-Class SVM, Local Outlier Factor
  • Interactive Metrics: Confusion matrix counts (TP, TN, FP, FN), Accuracy, Precision, Recall, F1-score, G-Mean, TPR, TNR, FPR, FNR

  • Decision Boundary Visualizations: 2D plots with fullscreen toggle 📈

⚙️ Installation

  1. Clone this repo:

    git clone https://github.com/yourusername/ml-explorer.git
    cd ml-explorer
  2. Create a virtual environment (optional but recommended):

    python -m venv venv
    source venv/bin/activate   # macOS/Linux
    venv\Scripts\activate    # Windows
  3. Install dependencies:

    pip install -r requirements.txt

🚀 Usage

Run the Streamlit app:

streamlit run app.py
  • Use the sidebar to select dataset, preprocessing steps, and models
  • View performance metrics in an interactive table (sortable)
  • Expand each model's section to see its decision boundary plot
  • Toggle Fullscreen plots to enlarge charts inside the main view

🤝 Contributing

Feel free to open issues or PRs! ⭐

📜 License

MIT License © 2025 eldraco

About

A Streamlit app to explore classification and anomaly-detection pipelines on synthetic datasets! 🧪

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Packages

No packages published

Languages