Skip to content

tarunpr11/Sign-Language-App

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🤟 Sign Language Detection App

A real-time sign language detection system using the TensorFlow 2 Object Detection API and OpenCV. This project recognizes 16 different hand signs through your webcam and can be extended further.


🧠 Model

The app uses SSD MobileNet V2 FPNLite 320x320, pretrained on COCO, and fine-tuned to detect the following 16 custom hand signs:

  • Fine
  • Hello
  • Help
  • Home
  • I
  • I Hate You
  • I Love You
  • Mother
  • No
  • Pray
  • Call
  • Thank You
  • Time
  • Water
  • Where
  • Yes

🛠 Project Structure

Tensorflow/
├── workspace/
│   ├── annotations/
│   ├── images/
│   │   ├── train/
│   │   └── test/
│   ├── models/
│   │   └── my_ssd_mobnet/
│   └── pre-trained-models/
├── scripts/
│   └── generate_tfrecord.py
└── models/  <-- cloned from TensorFlow GitHub repo

🧪 Setup Instructions

  1. Clone the TensorFlow models repo (from within Tensorflow/):

    git clone https://github.com/tensorflow/models.git
    
  2. Generate label_map.pbtxt for 16 classes.

  3. Generate TFRecord files:

    python Tensorflow/scripts/generate_tfrecord.py -x Tensorflow/workspace/images/train -l Tensorflow/workspace/annotations/label_map.pbtxt -o Tensorflow/workspace/annotations/train.record
    python Tensorflow/scripts/generate_tfrecord.py -x Tensorflow/workspace/images/test -l Tensorflow/workspace/annotations/label_map.pbtxt -o Tensorflow/workspace/annotations/test.record
  4. Copy the pipeline.config from the pre-trained model into my_ssd_mobnet/.

  5. Edit pipeline.config to:

    • Set num_classes = 16
    • Set fine_tune_checkpoint to the pretrained model's checkpoint
    • Update paths for train.record, test.record, and label_map.pbtxt
  6. Train the model:

    python Tensorflow/models/research/object_detection/model_main_tf2.py \
    --model_dir=Tensorflow/workspace/models/my_ssd_mobnet \
    --pipeline_config_path=Tensorflow/workspace/models/my_ssd_mobnet/pipeline.config \
    --num_train_steps=8000

🎥 Real-Time Detection

After training, load the model and run real-time detection using your webcam:

  • Initializes webcam feed
  • Detects a hand sign in each frame
  • Overlays bounding box and label in real time
  • Uses a confidence threshold of 0.5

The app uses OpenCV to access the webcam and TensorFlow to process the frame through the trained model.


⚙️ Dependencies

  • Python 3.x
  • TensorFlow 2.x
  • OpenCV
  • protobuf
  • Pillow
  • Jupyter Notebook (optional for development)

Install them via pip:

pip install tensorflow opencv-python protobuf pillow

👨‍💻 Author

Tarun Parthiban
B.Tech CSE (AI & Robotics)
Vellore Institute of Technology, Chennai

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •