Skip to content

Enable HiFi SIMD for SUB operator #3088

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
53 changes: 49 additions & 4 deletions tensorflow/lite/micro/kernels/xtensa/sub.cc
Original file line number Diff line number Diff line change
Expand Up @@ -36,14 +36,55 @@ void* SubInit(TfLiteContext* context, const char* buffer, size_t length) {
return context->AllocatePersistentBuffer(context, sizeof(OpDataSub));
}

void EvalSub(TfLiteContext* context, TfLiteNode* node, TfLiteSubParams* params,
const OpDataSub* data, const TfLiteEvalTensor* input1,
const TfLiteEvalTensor* input2, TfLiteEvalTensor* output) {
TfLiteStatus EvalSub(TfLiteContext* context, TfLiteNode* node,
TfLiteSubParams* params, const OpDataSub* data,
const TfLiteEvalTensor* input1,
const TfLiteEvalTensor* input2, TfLiteEvalTensor* output) {
float output_activation_min, output_activation_max;
CalculateActivationRange(params->activation, &output_activation_min,
&output_activation_max);
tflite::ArithmeticParams op_params;
SetActivationParams(output_activation_min, output_activation_max, &op_params);

#if HIFI_VFPU && (defined(HIFI3) || defined(HIFI4) || defined(HIFI5))
const RuntimeShape extended_input1_shape =
RuntimeShape::ExtendedShape(5, tflite::micro::GetTensorShape(input1));
const RuntimeShape extended_input2_shape =
RuntimeShape::ExtendedShape(5, tflite::micro::GetTensorShape(input2));
const RuntimeShape extended_output_shape =
RuntimeShape::ExtendedShape(5, tflite::micro::GetTensorShape(output));
const int* input1_dims = extended_input1_shape.DimsData();
const int* input2_dims = extended_input2_shape.DimsData();
const int* output_dims = extended_output_shape.DimsData();

int inp1_off = 0;
int inp2_off = 0;
int out_off = output_dims[1] * output_dims[2] * output_dims[3] * output_dims[4];
if (input1_dims[0] > 1) {
inp1_off =
input1_dims[1] * input1_dims[2] * input1_dims[3] * input1_dims[4];
}
if (input2_dims[0] > 1) {
inp2_off =
input2_dims[1] * input2_dims[2] * input2_dims[3] * input2_dims[4];
}

for (int b = 0; b < output_dims[0]; b++) {
int err = xa_nn_elm_sub_broadcast_4D_f32xf32_f32(
tflite::micro::GetTensorData<float>(output) + b * out_off,
output_dims + 1,
tflite::micro::GetTensorData<float>(input1) + b * inp1_off,
input1_dims + 1,
tflite::micro::GetTensorData<float>(input2) + b * inp2_off,
input2_dims + 1);
TF_LITE_ENSURE(context, err == 0);
}

float* output_data = tflite::micro::GetTensorData<float>(output);
xa_nn_vec_activation_min_max_f32_f32(
output_data, output_data, op_params.float_activation_min,
op_params.float_activation_max, (output_dims[0] * out_off));
#else // HIFI_VFPU && (defined(HIFI3) || defined(HIFI4) || defined(HIFI5))
if (data->requires_broadcast) {
tflite::reference_ops::BroadcastSubSlow(
op_params, tflite::micro::GetTensorShape(input1),
Expand All @@ -61,6 +102,9 @@ void EvalSub(TfLiteContext* context, TfLiteNode* node, TfLiteSubParams* params,
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
}
#endif

return kTfLiteOk;
}

TfLiteStatus EvalSubQuantized(TfLiteContext* context, TfLiteNode* node,
Expand Down Expand Up @@ -229,7 +273,8 @@ TfLiteStatus SubEval(TfLiteContext* context, TfLiteNode* node) {
const OpDataSub& data = *(static_cast<const OpDataSub*>(node->user_data));

if (output->type == kTfLiteFloat32) {
EvalSub(context, node, params, &data, input1, input2, output);
TF_LITE_ENSURE_OK(
context, EvalSub(context, node, params, &data, input1, input2, output));
} else if (output->type == kTfLiteInt8 || output->type == kTfLiteInt16) {
TF_LITE_ENSURE_OK(context, EvalSubQuantized(context, node, params, &data,
input1, input2, output));
Expand Down