Skip to content

Add Qwen2.5, Gemma-1, Phi-2 #369

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 1 commit into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 44 additions & 0 deletions tests/models/gemma_2b_it/test_gemma_2b_it.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
import torch
import pytest
from transformers import AutoTokenizer, AutoModelForCausalLM
from tests.utils import ModelTester


class ThisTester(ModelTester):
def _load_model(self):
model_name = "google/gemma-1.1-2b-it"
self.tokenizer = AutoTokenizer.from_pretrained(
model_name, padding_side="left", torch_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
return model.generate

def _load_inputs(self):
prompt = "This is a test prompt."
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids
arguments = {
"input_ids": input_ids,
"do_sample": True,
"temperature": 0.9,
"max_new_tokens": 5,
}
return arguments

def set_model_eval(self, model):
return model


@pytest.mark.parametrize("mode", ["eval"])
@pytest.mark.compilation_xfail
def test_gemma(record_property, mode):
model_name = "Gemma-1.1-2b-it"
record_property("model_name", model_name)
record_property("mode", mode)

tester = ThisTester(model_name, mode)
results = tester.test_model()
if mode == "eval":
gen_text = tester.tokenizer.batch_decode(results)[0]
print(f"Generated Text:\n{gen_text}")

record_property("torch_ttnn", (tester, results))
44 changes: 44 additions & 0 deletions tests/models/phi_2/test_phi.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
import torch
import pytest
from transformers import AutoTokenizer, AutoModelForCausalLM
from tests.utils import ModelTester


class ThisTester(ModelTester):
def _load_model(self):
model_name = "microsoft/phi-2"
self.tokenizer = AutoTokenizer.from_pretrained(
model_name, padding_side="left", torch_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
return model.generate

def _load_inputs(self):
prompt = "This is a test prompt."
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids
arguments = {
"input_ids": input_ids,
"do_sample": True,
"temperature": 0.9,
"max_new_tokens": 5,
}
return arguments

def set_model_eval(self, model):
return model


@pytest.mark.parametrize("mode", ["eval"])
@pytest.mark.compilation_xfail
def test_phi_2(record_property, mode):
model_name = "Phi-2"
record_property("model_name", model_name)
record_property("mode", mode)

tester = ThisTester(model_name, mode)
results = tester.test_model()
if mode == "eval":
gen_text = tester.tokenizer.batch_decode(results)[0]
print(f"Generated Text:\n{gen_text}")

record_property("torch_ttnn", (tester, results))
44 changes: 44 additions & 0 deletions tests/models/qwen2.5/test_qwen2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
import torch
import pytest
from transformers import AutoTokenizer, AutoModelForCausalLM
from tests.utils import ModelTester


class ThisTester(ModelTester):
def _load_model(self):
model_name = "Qwen/Qwen2.5-0.5B-Instruct"
self.tokenizer = AutoTokenizer.from_pretrained(
model_name, padding_side="left", torch_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
return model.generate

def _load_inputs(self):
prompt = "This is a test prompt."
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids
arguments = {
"input_ids": input_ids,
"do_sample": True,
"temperature": 0.9,
"max_new_tokens": 5,
}
return arguments

def set_model_eval(self, model):
return model


@pytest.mark.parametrize("mode", ["eval"])
@pytest.mark.compilation_xfail
def test_qwen(record_property, mode):
model_name = "Qwen2.5"
record_property("model_name", model_name)
record_property("mode", mode)

tester = ThisTester(model_name, mode)
results = tester.test_model()
if mode == "eval":
gen_text = tester.tokenizer.batch_decode(results)[0]
print(f"Generated Text:\n{gen_text}")

record_property("torch_ttnn", (tester, results))
68 changes: 68 additions & 0 deletions tests/models/qwen2_vl/test_qwen.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
import torch
import pytest
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from PIL import Image
import requests
from torchvision import io
from typing import Dict
from tests.utils import ModelTester


class ThisTester(ModelTester):
def _load_model(self):
model_name = "Qwen/Qwen2-VL-2B-Instruct"
self.tokenizer = AutoTokenizer.from_pretrained(
model_name, padding_side="left", torch_dtype=torch.bfloat16
)
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-2B-Instruct", torch_dtype=torch.bfloat16
)
self.processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")

return model.generate

def _load_inputs(self):
# Image
url = "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
conversation = [
{
"role": "user",
"content": [
{
"type": "image",
},
{"type": "text", "text": "Describe this image."},
],
}
]
text_prompt = self.processor.apply_chat_template(conversation, add_generation_prompt=True)
inputs = self.processor(
text=[text_prompt], images=[image], padding=True, return_tensors="pt"
)

arguments = inputs.update({
"do_sample": True,
"temperature": 0.9,
"max_new_tokens": 10,
})
return arguments

def set_model_eval(self, model):
return model


@pytest.mark.parametrize("mode", ["eval"])
@pytest.mark.skip(reason="This test requires transformers>=4.45.0")
def test_qwen(record_property, mode):
model_name = "Qwen2-VL-2B"
record_property("model_name", model_name)
record_property("mode", mode)

tester = ThisTester(model_name, mode)
results = tester.test_model()
if mode == "eval":
gen_text = tester.processor.batch_decode(results, skip_special_tokens=True, clean_up_tokenization_spaces=True)
print(f"Generated Text:\n{gen_text}")

record_property("torch_ttnn", (tester, results))
Loading