Skip to content

thanhndv212/figaroh-plus

Repository files navigation

FIGAROH

Free dynamics Identification and Geometrical cAlibration of RObot and Human

FIGAROH is a Python toolbox providing efficient and highly flexible frameworks for dynamics identification and geometric calibration of rigid multi-body systems based on the URDF modeling convention. It supports both serial (industrial manipulators) and tree-structure systems (humanoids, mobile manipulators).

📦 Available on PyPI: pip install figaroh
📖 Version: 0.3.0

Note: This repo is a fork from gitlab repo of which the author is no longer a contributor.


Installation

Quick Installation (Recommended)

Install the core FIGAROH package with all dependencies (except for cyipopt):

pip install figaroh

Development Installation

For development or local installation from source, choose one of these methods:

Method 1: Direct pip installation (Simple)

git clone https://github.com/thanhndv212/figaroh-plus.git
cd figaroh
pip install -e .

Method 2: Conda environment (Recommended for the use of cyipopt)

git clone https://github.com/thanhndv212/figaroh-plus.git
cd figaroh
# Create conda environment with optimization libraries
conda env create -f environment.yml
conda activate figaroh-dev

Examples Repository

git clone https://github.com/thanhndv212/figaroh-examples.git
cd figaroh-examples && pip install -r requirements.txt

Package Structure

figaroh/
├── calibration/          # Geometric calibration framework
│   ├── BaseCalibration       # Abstract base class for kinematic calibration
│   ├── calibration_tools     # Parameter parsing, regressor computation
│   ├── config                # Configuration loading and validation
│   ├── data_loader           # CSV data loading utilities
│   └── parameter             # Kinematic parameter management
│
├── identification/       # Dynamic parameter identification
│   ├── BaseIdentification    # Abstract base class for dynamic identification
│   ├── identification_tools  # Regressor utilities, parameter extraction
│   ├── config                # Identification configuration parsing
│   └── parameter             # Inertial parameter management (friction, inertia)
│
├── optimal/              # Optimization-based trajectory & configuration
│   ├── BaseOptimalTrajectory     # IPOPT-based trajectory optimization
│   ├── BaseOptimalCalibration    # Optimal calibration posture selection
│   ├── BaseParameterComputer     # Base parameter computation utilities
│   ├── TrajectoryConstraintManager # Constraint handling for optimization
│   └── config                    # Optimization configuration management
│
├── tools/                # Core robotics utilities
│   ├── RegressorBuilder      # Object-oriented regressor computation
│   ├── LinearSolver          # Advanced linear solver (LS, Ridge, Lasso, etc.)
│   ├── QRDecomposer          # QR decomposition for base parameters
│   ├── CollisionManager      # Collision detection and visualization
│   ├── RobotIPOPTSolver      # IPOPT optimization wrapper
│   └── CubicSpline           # Trajectory interpolation utilities
│
├── utils/                # Helper utilities
│   ├── UnifiedConfigParser   # YAML config with inheritance support
│   ├── ResultsManager        # Unified plotting and result export
│   ├── error_handling        # Custom exceptions and validation
│   └── cubic_spline          # Spline trajectory generation
│
├── measurements/         # Data acquisition and processing
└── visualisation/        # Meshcat-based 3D visualization

Core Modules

figaroh.calibration — Geometric Calibration

BaseCalibration provides a complete framework for kinematic parameter calibration:

  • Automatic parameter identification using QR decomposition
  • Robust optimization with iterative outlier removal (Levenberg-Marquardt)
  • Unit-aware weighting for position/orientation measurements
  • Multiple calibration models: full kinematic parameters, joint offsets
  • Sensor support: cameras, motion capture, planar constraints

figaroh.identification — Dynamic Identification

BaseIdentification implements the complete dynamic parameter identification workflow:

  • Standard + extended parameters: inertial parameters, friction (viscous/Coulomb), actuator inertia, joint offsets
  • Regressor-based identification with base parameter reduction
  • Multiple solvers: Least Squares, Weighted LS, Ridge, Lasso, Elastic Net
  • Decimation and filtering for signal processing
  • Quality metrics: RMSE, correlation, condition number

figaroh.optimal — Trajectory & Configuration Optimization

BaseOptimalTrajectory generates exciting trajectories for dynamic identification:

  • IPOPT-based nonlinear optimization with cyipopt
  • Cubic spline parameterization for C² continuous trajectories
  • Constraint handling: joint limits, velocity limits, torque limits, self-collision
  • Cost functions: condition number minimization, excitation maximization

BaseOptimalCalibration selects optimal calibration configurations:

  • Combinatorial optimization from feasible posture pool
  • Observability-based selection for maximum information gain

figaroh.tools — Robotics Utilities

Class Description
RegressorBuilder Object-oriented regressor computation with configurable parameters
LinearSolver Advanced solver supporting 10+ methods (lstsq, QR, SVD, Ridge, Lasso, etc.)
QRDecomposer QR decomposition with column pivoting for base parameter identification
CollisionManager Pinocchio-based collision detection with visualization
RobotIPOPTSolver High-level IPOPT interface with automatic differentiation

figaroh.utils — Configuration & Results

Class Description
UnifiedConfigParser YAML parsing with template inheritance and variable expansion
ResultsManager Unified plotting for calibration/identification results
CubicSpline C² continuous spline trajectory generation

Key Features

🔧 Dynamic Identification

  • Extended dynamic models: friction, actuator inertia, joint offsets
  • Optimal exciting trajectory generation (IPOPT)
  • Multiple parameter estimation algorithms
  • Physically consistent parameters for URDF updates

📐 Geometric Calibration

  • Full kinematic parameter estimation (6 DOF per joint)
  • Optimal posture selection via combinatorial optimization
  • Support for cameras, motion capture, planar constraints
  • Direct URDF model updates

⚙️ Configuration System

  • Unified YAML format with template inheritance
  • Automatic format detection (legacy compatibility)
  • Variable expansion and validation
  • Task-specific configs: calibration, identification, optimal trajectory

🛠️ Modern Architecture

  • Proper logging (NullHandler pattern for libraries)
  • Abstract base classes for extensibility
  • Pinocchio 3.x compatibility
  • Cross-platform: Linux, macOS, Windows

Methodology

FIGAROH implements a systematic workflow for robot calibration and identification:

Step 1: Configuration Setup

Define robot parameters, sensor configurations, and task-specific settings in YAML:

# config/robot_config.yaml
robot:
  name: "my_robot"
  urdf_path: "models/robot.urdf"

calibration:
  start_frame: "base_link"
  end_frame: "tool0"
  method: "full_params"
  
identification:
  has_friction: true
  has_actuator_inertia: true
  active_joints: ["joint1", "joint2", "joint3"]

Step 2: Optimal Experiment Design

Generate exciting trajectories or calibration postures:

  • For identification: Solve IPOPT optimization to find trajectories maximizing regressor condition
  • For calibration: Combinatorial selection of postures maximizing observability

Step 3: Data Collection & Processing

Load experimental data with automatic validation:

from figaroh.calibration import BaseCalibration

calibrator = MyCalibration(robot, "config/robot_config.yaml")
calibrator.load_data("data/measurements.csv")

Step 4: Parameter Estimation

Run identification/calibration with quality metrics:

# Calibration
calibrator.solve()
print(f"RMSE: {calibrator.evaluation_metrics['rmse']:.6f}")

# Identification  
identifier.solve(decimate=True, decimation_factor=10)
print(f"Correlation: {identifier.correlation:.4f}")

Step 5: Model Update

Export calibrated/identified parameters to URDF or YAML.


Dependencies

Category Packages
Scientific numpy, scipy, matplotlib, pandas, numdifftools
Robotics pinocchio (pin), ndcurves, meshcat
Config pyyaml, rospkg
Optimization cyipopt (conda), picos

Examples

Complete working examples are available in figaroh-examples:

Robot Tasks
Staubli TX40 Dynamic identification
Universal UR10 Geometric calibration (RealSense camera)
TIAGo Full workflow: identification + calibration
TALOS Humanoid Torso-arm calibration, whole-body calibration

Citations

If you use FIGAROH in your research, please cite the following papers:

Main Reference

@inproceedings{nguyen2023figaroh,
  title={FIGAROH: a Python toolbox for dynamic identification and geometric calibration of robots and humans},
  author={Nguyen, Dinh Vinh Thanh and Bonnet, Vincent and Maxime, Sabbah and Gautier, Maxime and Fernbach, Pierre and others},
  booktitle={IEEE-RAS International Conference on Humanoid Robots},
  pages={1--8},
  year={2023},
  address={Austin, TX, United States},
  doi={10.1109/Humanoids57100.2023.10375232},
  url={https://hal.science/hal-04234676v2}
}

Related Work

@inproceedings{nguyen2024improving,
  title={Improving Operational Accuracy of a Mobile Manipulator by Modeling Geometric and Non-Geometric Parameters},
  author={Nguyen, Thanh D. V. and Bonnet, V. and Fernbach, P. and Flayols, T. and Lamiraux, F.},
  booktitle={2024 IEEE-RAS 23rd International Conference on Humanoid Robots (Humanoids)},
  pages={965--972},
  year={2024},
  address={Nancy, France},
  doi={10.1109/Humanoids58906.2024.10769790}
}

@techreport{nguyen2025humanoid,
  title={Humanoid Robot Whole-body Geometric Calibration with Embedded Sensors and a Single Plane},
  author={Nguyen, Thanh D V and Bonnet, Vincent and Fernbach, Pierre and Daney, David and Lamiraux, Florent},
  year={2025},
  institution={HAL},
  url={https://hal.science/hal-05169055}
}

License

Please refer to the LICENSE file for licensing information.

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages