Skip to content

Update build.py #1095

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
40 changes: 20 additions & 20 deletions darkflow/net/build.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,11 +12,11 @@
class TFNet(object):

_TRAINER = dict({
'rmsprop': tf.train.RMSPropOptimizer,
'adadelta': tf.train.AdadeltaOptimizer,
'adagrad': tf.train.AdagradOptimizer,
'adagradDA': tf.train.AdagradDAOptimizer,
'momentum': tf.train.MomentumOptimizer,
'rmsprop': tf.compat.v1.train.RMSPropOptimizer,
'adadelta': tf.compat.v1.train.AdadeltaOptimizer,
'adagrad': tf.compat.v1.train.AdagradOptimizer,
'adagradDA': tf.compat.v1.train.AdagradDAOptimizer,
'momentum': tf.compat.v1.train.MomentumOptimizer,
'adam': tf.train.AdamOptimizer,
'ftrl': tf.train.FtrlOptimizer,
'sgd': tf.train.GradientDescentOptimizer
Expand Down Expand Up @@ -54,15 +54,15 @@ def __init__(self, FLAGS, darknet = None):
self.build_from_pb()
return

if darknet is None:
if darknet is None:
darknet = Darknet(FLAGS)
self.ntrain = len(darknet.layers)

self.darknet = darknet
args = [darknet.meta, FLAGS]
self.num_layer = len(darknet.layers)
self.framework = create_framework(*args)

self.meta = darknet.meta

self.say('\nBuilding net ...')
Expand All @@ -76,12 +76,12 @@ def __init__(self, FLAGS, darknet = None):
self.setup_meta_ops()
self.say('Finished in {}s\n'.format(
time.time() - start))

def build_from_pb(self):
with tf.gfile.FastGFile(self.FLAGS.pbLoad, "rb") as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())

tf.import_graph_def(
graph_def,
name=""
Expand All @@ -94,9 +94,9 @@ def build_from_pb(self):
self.inp = tf.get_default_graph().get_tensor_by_name('input:0')
self.feed = dict() # other placeholders
self.out = tf.get_default_graph().get_tensor_by_name('output:0')

self.setup_meta_ops()

def build_forward(self):
verbalise = self.FLAGS.verbalise

Expand Down Expand Up @@ -132,39 +132,39 @@ def setup_meta_ops(self):
cfg['gpu_options'] = tf.GPUOptions(
per_process_gpu_memory_fraction = utility)
cfg['allow_soft_placement'] = True
else:
else:
self.say('Running entirely on CPU')
cfg['device_count'] = {'GPU': 0}

if self.FLAGS.train: self.build_train_op()

if self.FLAGS.summary:
self.summary_op = tf.summary.merge_all()
self.writer = tf.summary.FileWriter(self.FLAGS.summary + 'train')

self.sess = tf.Session(config = tf.ConfigProto(**cfg))
self.sess.run(tf.global_variables_initializer())

if not self.ntrain: return
self.saver = tf.train.Saver(tf.global_variables(),
self.saver = tf.train.Saver(tf.global_variables(),
max_to_keep = self.FLAGS.keep)
if self.FLAGS.load != 0: self.load_from_ckpt()

if self.FLAGS.summary:
self.writer.add_graph(self.sess.graph)

def savepb(self):
"""
Create a standalone const graph def that
Create a standalone const graph def that
C++ can load and run.
"""
darknet_pb = self.to_darknet()
flags_pb = self.FLAGS
flags_pb.verbalise = False

flags_pb.train = False
# rebuild another tfnet. all const.
tfnet_pb = TFNet(flags_pb, darknet_pb)
tfnet_pb = TFNet(flags_pb, darknet_pb)
tfnet_pb.sess = tf.Session(graph = tfnet_pb.graph)
# tfnet_pb.predict() # uncomment for unit testing
name = 'built_graph/{}.pb'.format(self.meta['name'])
Expand All @@ -174,4 +174,4 @@ def savepb(self):
json.dump(self.meta, fp)
self.say('Saving const graph def to {}'.format(name))
graph_def = tfnet_pb.sess.graph_def
tf.train.write_graph(graph_def,'./', name, False)
tf.train.write_graph(graph_def,'./', name, False)