Skip to content

NaN handeling #305

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 7 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
110 changes: 108 additions & 2 deletions test/test_images.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,8 @@
import pytest
from numpy import arange, allclose, array, mean, apply_along_axis, float64
from numpy import arange, allclose, array, mean, apply_along_axis, float64, \
nanmean, nan, nansum, nanvar, nanmin, nanmax, nanstd

from thunder.images.readers import fromlist, fromarray
from thunder.images.readers import fromlist
from thunder.images.images import Images
from thunder.series.series import Series

Expand Down Expand Up @@ -33,6 +34,7 @@ def test_sample(eng):
assert allclose(data.sample(1).shape, (1, 2, 2))
assert allclose(data.filter(lambda x: x.max() > 5).sample(1).toarray(), [[1, 10], [1, 10]])


def test_labels(eng):
x = arange(10).reshape(10, 1, 1)
data = fromlist(x, labels=range(10), engine=eng)
Expand Down Expand Up @@ -159,27 +161,131 @@ def test_mean(eng):
assert allclose(data.mean().toarray(), original.mean(axis=0))


def test_nanmean(eng):
original = arange(24).reshape((2, 3, 4)).astype(float64)
data = fromlist(list(original), engine=eng)
assert allclose(data.nanmean().shape, (1, 3, 4))
assert allclose(data.nanmean().toarray(), nanmean(original, axis=0))

original[0, 2, 3] = nan
original[1, 0, 2] = nan
original[1, 2, 2] = nan
data = fromlist(list(original), engine=eng)
assert allclose(data.nanmean().shape, (1, 3, 4))
assert allclose(data.nanmean().toarray(), nanmean(original, axis=0))


def test_min(eng):
original = arange(24).reshape((2, 3, 4))
data = fromlist(list(original), engine=eng)
assert allclose(data.min().shape, (1, 3, 4))
assert allclose(data.min().toarray(), original.min(axis=0))


def test_nanmin(eng):
original = arange(24).reshape((2, 3, 4)).astype(float64)
data = fromlist(list(original), engine=eng)
assert allclose(data.nanmin().shape, (1, 3, 4))
assert allclose(data.nanmin().toarray(), original.min(axis=0))
original[0, 2, 3] = nan
original[1, 0, 2] = nan
original[1, 2, 2] = nan
data = fromlist(list(original), engine=eng)
assert allclose(data.nanmin().shape, (1, 3, 4))
assert allclose(data.nanmin().toarray(), nanmin(original, axis=0))


def test_max(eng):
original = arange(24).reshape((2, 3, 4))
data = fromlist(list(original), engine=eng)
assert allclose(data.max().shape, (1, 3, 4))
assert allclose(data.max().toarray(), original.max(axis=0))


def test_nanmax(eng):
original = arange(24).reshape((2, 3, 4)).astype(float64)
data = fromlist(list(original), engine=eng)
assert allclose(data.nanmax().shape, (1, 3, 4))
assert allclose(data.nanmax().toarray(), original.max(axis=0))
original[0, 2, 3] = nan
original[1, 0, 2] = nan
original[1, 2, 2] = nan
data = fromlist(list(original), engine=eng)
assert allclose(data.nanmax().shape, (1, 3, 4))
assert allclose(data.nanmax().toarray(), nanmax(original, axis=0))


def test_sum(eng):
original = arange(24).reshape((2, 3, 4))
data = fromlist(list(original), engine=eng)
assert allclose(data.sum().shape, (1, 3, 4))
assert allclose(data.sum().toarray(), original.sum(axis=0))


def test_nansum(eng):
original = arange(24).reshape((2, 3, 4)).astype(float64)
data = fromlist(list(original), engine=eng)
assert allclose(data.nansum().shape, (1, 3, 4))
assert allclose(data.nansum().toarray(), nansum(original, axis=0))

original[0, 2, 3] = nan
original[1, 0, 2] = nan
original[1, 2, 2] = nan
data = fromlist(list(original), engine=eng)
assert allclose(data.nansum().shape, (1, 3, 4))
assert allclose(data.nansum().toarray(), nansum(original, axis=0))


def test_var(eng):
original = arange(24).reshape((2, 3, 4))
data = fromlist(list(original), engine=eng)
assert allclose(data.var().shape, (1, 3, 4))
assert allclose(data.var().toarray(), original.var(axis=0))


def test_nanvar(eng):
original = arange(24).reshape((2, 3, 4)).astype(float64)
data = fromlist(list(original), engine=eng)
assert allclose(data.nanvar().shape, (1, 3, 4))
assert allclose(data.nanvar().toarray(), nanvar(original, axis=0))

original[0, 2, 3] = nan
original[1, 0, 2] = nan
original[1, 2, 2] = nan
data = fromlist(list(original), engine=eng)
assert allclose(data.nanvar().shape, (1, 3, 4))
assert allclose(data.nanvar().toarray(), nanvar(original, axis=0))


def test_std(eng):
original = arange(24).reshape((2, 3, 4))
data = fromlist(list(original), engine=eng)
assert allclose(data.std().shape, (1, 3, 4))
assert allclose(data.std().toarray(), original.std(axis=0))


def test_nanstd(eng):
original = arange(24).reshape((2, 3, 4)).astype(float64)
data = fromlist(list(original), engine=eng)
assert allclose(data.nanstd().shape, (1, 3, 4))
assert allclose(data.nanstd().toarray(), nanstd(original, axis=0))

original[0, 2, 3] = nan
original[1, 0, 2] = nan
original[1, 2, 2] = nan
data = fromlist(list(original), engine=eng)
assert allclose(data.nanstd().shape, (1, 3, 4))
assert allclose(data.nanstd().toarray(), nanstd(original, axis=0))


def test_subtract(eng):
original = arange(24).reshape((4, 6))
data = fromlist([original], engine=eng)
assert allclose(data.subtract(1).toarray(), original - 1)
sub = arange(24).reshape((4, 6))
assert allclose(data.subtract(sub).toarray(), original - sub)


def test_map_as_series(eng):
original = arange(4*4).reshape(4, 4)
data = fromlist(5*[original], engine=eng)
Expand Down
106 changes: 105 additions & 1 deletion test/test_series.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
import pytest
from numpy import allclose, arange, array, asarray, dot, cov, corrcoef, float64
from numpy import allclose, arange, array, asarray, dot, cov, corrcoef, float64, \
nanmean, nan, nansum, nanvar, nanmin, nanmax, nanstd

from thunder.series.readers import fromlist, fromarray
from thunder.images.readers import fromlist as img_fromlist
Expand Down Expand Up @@ -127,6 +128,23 @@ def test_mean(eng):
assert str(val.dtype) == 'float64'


def test_nanmean(eng):
arr = array([arange(8), arange(8)]).astype(float64)
data = fromarray(arr, engine=eng)
val = data.nanmean().toarray()
expected = nanmean(data.toarray(), axis=0)
assert allclose(val, expected)
assert str(val.dtype) == 'float64'
arr[0, 4] = nan
arr[1, 3] = nan
arr[1, 4] = nan
data = fromarray(arr, engine=eng)
val = data.nanmean().toarray()
expected = nanmean(data.toarray(), axis=0)
assert allclose(val, expected, equal_nan=True)
assert str(val.dtype) == 'float64'


def test_sum(eng):
data = fromlist([arange(8), arange(8)], engine=eng)
val = data.sum().toarray()
Expand All @@ -135,6 +153,23 @@ def test_sum(eng):
assert str(val.dtype) == 'int64'


def test_nansum(eng):
arr = array([arange(8), arange(8)]).astype(float64)
data = fromarray(arr, engine=eng)
val = data.nansum().toarray()
expected = nansum(data.toarray(), axis=0)
assert allclose(val, expected)
assert str(val.dtype) == 'float64'
arr[0, 4] = nan
arr[1, 3] = nan
arr[1, 4] = nan
data = fromarray(arr, engine=eng)
val = data.nansum().toarray()
expected = nansum(data.toarray(), axis=0)
assert allclose(val, expected, equal_nan=True)
assert str(val.dtype) == 'float64'


def test_var(eng):
data = fromlist([arange(8), arange(8)], engine=eng)
val = data.var().toarray()
Expand All @@ -143,6 +178,23 @@ def test_var(eng):
assert str(val.dtype) == 'float64'


def test_nanvar(eng):
arr = array([arange(8), arange(8)]).astype(float64)
data = fromarray(arr, engine=eng)
val = data.nanvar().toarray()
expected = nanvar(data.toarray(), axis=0)
assert allclose(val, expected)
assert str(val.dtype) == 'float64'
arr[0, 4] = nan
arr[1, 3] = nan
arr[1, 4] = nan
data = fromarray(arr, engine=eng)
val = data.nanvar().toarray()
expected = nanvar(data.toarray(), axis=0)
assert allclose(val, expected, equal_nan=True)
assert str(val.dtype) == 'float64'


def test_std(eng):
data = fromlist([arange(8), arange(8)], engine=eng)
val = data.std().toarray()
Expand All @@ -151,19 +203,71 @@ def test_std(eng):
assert str(val.dtype) == 'float64'


def test_nanstd(eng):
arr = array([arange(8), arange(8)]).astype(float64)
data = fromarray(arr, engine=eng)
val = data.nanstd().toarray()
expected = nanstd(data.toarray(), axis=0)
assert allclose(val, expected)
assert str(val.dtype) == 'float64'
arr[0, 4] = nan
arr[1, 3] = nan
arr[1, 4] = nan
data = fromarray(arr, engine=eng)
val = data.nanstd().toarray()
expected = nanstd(data.toarray(), axis=0)
assert allclose(val, expected, equal_nan=True)
assert str(val.dtype) == 'float64'


def test_max(eng):
data = fromlist([arange(8), arange(8)], engine=eng)
val = data.max().toarray()
expected = data.toarray().max(axis=0)
assert allclose(val, expected)


def test_nanmax(eng):
arr = array([arange(8), arange(8)]).astype(float64)
data = fromarray(arr, engine=eng)
val = data.nanmax().toarray()
expected = nanmax(data.toarray(), axis=0)
assert allclose(val, expected)
assert str(val.dtype) == 'float64'
arr[0, 4] = nan
arr[1, 3] = nan
arr[1, 4] = nan
data = fromarray(arr, engine=eng)
val = data.nanmax().toarray()
expected = nanmax(data.toarray(), axis=0)
assert allclose(val, expected, equal_nan=True)
assert str(val.dtype) == 'float64'


def test_min(eng):
data = fromlist([arange(8), arange(8)], engine=eng)
val = data.min().toarray()
expected = data.toarray().min(axis=0)
assert allclose(val, expected)


def test_nanmin(eng):
arr = array([arange(8), arange(8)]).astype(float64)
data = fromarray(arr, engine=eng)
val = data.nanmin().toarray()
expected = nanmin(data.toarray(), axis=0)
assert allclose(val, expected)
assert str(val.dtype) == 'float64'
arr[0, 4] = nan
arr[1, 3] = nan
arr[1, 4] = nan
data = fromarray(arr, engine=eng)
val = data.nanmin().toarray()
expected = nanmin(data.toarray(), axis=0)
assert allclose(val, expected, equal_nan=True)
assert str(val.dtype) == 'float64'


def test_labels(eng):
x = [array([0, 1]), array([2, 3]), array([4, 5]), array([6, 7])]
data = fromlist(x, labels=[0, 1, 2, 3], engine=eng)
Expand Down
36 changes: 36 additions & 0 deletions thunder/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -323,6 +323,42 @@ def min(self):
"""
raise NotImplementedError

def nanmean(self):
"""
Mean of values computed along the appropriate dimension ignoring NaNs.
"""
raise NotImplementedError

def nansum(self):
"""
Sum of values computed along the appropriate dimension ignoring NaNs.
"""
raise NotImplementedError

def nanvar(self):
"""
Variance of values computed along the appropriate dimension ignoring NaNs.
"""
raise NotImplementedError

def nanstd(self):
"""
Standard deviation computed of values along the appropriate dimension ignoring NaNs.
"""
raise NotImplementedError

def nanmax(self):
"""
Maximum of values computed along the appropriate dimension ignoring NaNs.
"""
raise NotImplementedError

def nanmin(self):
"""
Minimum of values computed along the appropriate dimension ignoring NaNs.
"""
raise NotImplementedError

def map(self, func, **kwargs):
"""
Map a function over elements.
Expand Down
Loading