UTA027: Artificial Intelligence
TIET Patiala
Instructors:
( RGB)Raghav B. Venkataramaiyer<bv.raghav>( STT)Stuti Chug<stuti.chug>( ABJ)Anu Bajaj<anu.bajaj>(PTKRA)Parteek Saini<psaini_phd24>
~^(1)^~Academic Calendar :material-file-pdf-box:
- Requires
thapar.edulogin
Course Syllabus :material-file-pdf-box:
Download :material-file-pdf-box:
| Code | Title | Date | Weightage |
|---|---|---|---|
| SESS#A1 | Assignment 1 | CE | 10 |
| SESS#A2 | Assignment 2 | CE | 10 |
| SESS#QZ1 | Quiz 1 | 18-02-2025 1730 IST | 05 |
| MST | Mid Sem Exam | TBA | 25 |
| SESS#QZ2 | Quiz 2 | 06-05-2025 1730 IST | 05 |
| EST | End Sem | TBA | 45 |
- :simple-googleslides: Overview{: target="_blank" } and administrative details.
- :simple-googleslides:
Predicate Calculus{: target="_blank" }
Introduction to Predicate Logic and Representation of Knowledge and Heuristics - :simple-googleslides: Reasoning{: target="_blank" } (Predicate Calculus)
- Application to Knowledge Graphs and Lifecycle of a research problem
See also: A01{: target="_blank" }
- :simple-googleslides: Graph Theory{: target="_blank" } + :simple-googleslides: BFS/DFS{: target="_blank" }.
- :simple-googleslides: Dijkstra’s Algorithm{: target="_blank" } for Single-Source Shortest Path.
- :simple-googleslides: Problem solving from a graphical stand point{: target="_blank" }
- :simple-googleslides: Introduction to ML{: target="_blank" }
- :simple-googleslides: Linear Regression{: target="_blank" }
- :simple-googleslides: Classification and Logistic Regression{: target="_blank" }
- :simple-googleslides: Support Vector Machines{: target="_blank" }
See Also: ML Notes or, Download :material-file-pdf-box:
- :simple-googleslides: Neuron and it application in Regression/ Classification{: target="_blank" }
- :simple-googleslides: Deep Neural Networks{: target="_blank" }
- Deep Learning: Residuals, Gating and RNN’s
State Machines and Reinforcement Learning
- :simple-googleslides: Computer Vision Overview
- :simple-googleslides: Computer Vision Problems
- Deep Learning in Computer Vision: :simple-googleslides: Lecture Set 1{: target="_blank" }, Lecture Set 2.
- Attention
- Diffusion
Inverse Rendering
| S.No. | Desc/Link | Deadline |
|---|---|---|
| A01 | Predicate Calculus{: target="_blank" } | 20-01-2025 0500 IST |
| A02 | Graph Methods (TBA) Practice: Python and Algos | 10-02-2025 0500 IST |
| A03 | Linear Regression | 24-02-2025 0500 IST |
| A04 | Neuron-based Regression | 24-Mar to 4-Apr |
| A05 | Neural Regression (Iris Dataset) | 7-Apr to 18-Apr |
| A06 | Visual Object Classification | 21-Apr to 2-May |
| A07 | YOLO | 4-May to 15-May |
- [CL]{: .htag } The Central Library (Link)
- [RR]{: .htag } RefRead (Link)
- [TB]{: .htag} [CL]{: .htag } [RR]{: .htag }
Luger, G. F. & others. (1998). Artificial
intelligence: Structures and strategies for complex
problem solving (Sixth). Pearson Education
India.
ISBN: 9788131743744 - [TB]{: .htag} [CL]{: .htag } Bishop,
C. M. (2006). Pattern recognition and machine
learning. Springer.
ISBN: 9788132209065 - [RB]{: .htag} [CL]{: .htag } Cormen, T. H.,
Leiserson, C. E., Rivest, R. L., & Stein,
C. (2022). Introduction to Algorithms (Fourth). MIT
Press.
ISBN: 9788120340077 - [RB]{: .htag} [CL]{: .htag } Gareth James,
Daniela Witten, Trevor Hastie, & Robert
Tibshirani. (2013). An Introduction to Statistical
Learning (1st ed.). Springer.
DOI: 10.1007/978-1-4614-7138-7ISBN: 9781461471387(Link) - [RB]{: .htag } [CL]{: .htag } MacKay,
D. J. C. (2003). Information theory, inference and
learning algorithms. Cambridge University
Press.
ISBN: 9780521670517(Link) - [RB]{: .htag } Bertsekas, D., & Tsitsiklis,
J. N. (2008). Introduction to probability
(Vol. 1). Athena Scientific.
ISBN: 9781886529236(Google Scholar) - [YT]{: .htag } [MOOC]{: .htag } Introduction to Probability. (MIT-OCW) (Archive 2011) (Archive 2018)
- [YT]{: .htag } [MOOC]{: .htag } Algorithms Illuminated. by Tim Roughgarden Videos: Part 1 Basics, Videos: Part 2 Graphs and Official Website
- [RB]{: .htag } [CL]{: .htag } Jurafsky, D.,
& Martin, J. H. (2025, January). Speech and Language
Processing: An Introduction to Natural Language
Processing, Computational Linguistics, and Speech
Recognition.
ISBN: 9789332518414(The Book), (The Chapter on Logistic Regression), (Official Website) - [MOOC]{: .htag } Illinois Institute Page on Logistic Regression.
- [YT]{: .htag } Late Prof. Winston’s Lecture on SVM (MIT-OCW) Video by MIT-OCW
*[CE]: Continuous Evaluation
*[TB]: Text Book
*[RB]: Reference Book
*[CL]: Accessible through the Central Library.
*[RR]: RefRead subscription accessible through TIET.
*[YT]: Youtube Video/Playlist
*[MOOC]: Online Course (or a part of it)