Skip to content

WIP Make (mostly) pgai 0.4.0 compatible #32

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 28 additions & 4 deletions tests/async_client_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,15 @@
@pytest.mark.asyncio
@pytest.mark.parametrize("schema", ["temp", None])
async def test_vector(service_url: str, schema: str) -> None:
vec = Async(service_url, "data_table", 2, schema_name=schema)
vec = Async(
service_url,
"data_table",
2,
schema_name=schema,
embedding_table_name="data_table",
id_column_name="id",
metadata_column_name="metadata",
)
await vec.drop_table()
await vec.create_tables()
empty = await vec.table_is_empty()
Expand Down Expand Up @@ -118,7 +126,7 @@ async def test_vector(service_url: str, schema: str) -> None:

assert isinstance(rec[0][SEARCH_RESULT_METADATA_IDX], dict)
assert isinstance(rec[0]["metadata"], dict)
assert rec[0]["contents"] == "the brown fox"
assert rec[0]["chunk"] == "the brown fox"

rec = await vec.search([1.0, 2.0], limit=4, predicates=Predicates(("key", "val2")))
assert len(rec) == 1
Expand Down Expand Up @@ -256,7 +264,15 @@ async def test_vector(service_url: str, schema: str) -> None:
await vec.drop_table()
await vec.close()

vec = Async(service_url, "data_table", 2, id_type="TEXT")
vec = Async(
service_url,
"data_table",
2,
id_type="TEXT",
embedding_table_name="data_table",
id_column_name="id",
metadata_column_name="metadata",
)
await vec.create_tables()
empty = await vec.table_is_empty()
assert empty
Expand All @@ -269,7 +285,15 @@ async def test_vector(service_url: str, schema: str) -> None:
await vec.drop_table()
await vec.close()

vec = Async(service_url, "data_table", 2, time_partition_interval=timedelta(seconds=60))
vec = Async(
service_url,
"data_table",
2,
time_partition_interval=timedelta(seconds=60),
embedding_table_name="data_table",
id_column_name="id",
metadata_column_name="metadata",
)
await vec.create_tables()
empty = await vec.table_is_empty()
assert empty
Expand Down
300 changes: 300 additions & 0 deletions tests/compatability_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,300 @@
import uuid
from collections.abc import Generator

import numpy
import psycopg2
import pytest
from psycopg2.extensions import ISOLATION_LEVEL_AUTOCOMMIT

from tests.mocks import embeddings
from tests.utils import test_file_path
from timescale_vector import client

# To Generate a new dump in blog.sql:
# Go through the quickstart in https://github.com/timescale/pgai/blob/main/docs/vectorizer-quick-start.md
# and run the following command:
# docker compose exec db pg_dump \
# -t public.blog \
# -t public.blog_contents_embeddings_store \
# -t public.blog_contents_embeddings \
# --inserts \
# --section=data \
# --section=pre-data \
# --no-table-access-method \
# postgres > blog.sql


@pytest.fixture(scope="module")
def quickstart(service_url: str) -> Generator[None, None, None]:
conn = psycopg2.connect(service_url)
conn.set_isolation_level(ISOLATION_LEVEL_AUTOCOMMIT)

with conn.cursor() as cursor:
cursor.execute("CREATE EXTENSION IF NOT EXISTS ai CASCADE;")
cursor.execute("DROP VIEW IF EXISTS blog_contents_embeddings;")
cursor.execute("DROP TABLE IF EXISTS blog_contents_embeddings_store;")
cursor.execute("DROP TABLE IF EXISTS blog;")

with open(test_file_path + "/sample_tables/blog.sql") as f:
sql = f.read()
cursor.execute(sql)

yield # Run the tests

conn = psycopg2.connect(service_url)
conn.set_isolation_level(ISOLATION_LEVEL_AUTOCOMMIT)

with conn.cursor() as cursor:
cursor.execute("DROP VIEW IF EXISTS blog_contents_embeddings;")
cursor.execute("DROP TABLE IF EXISTS blog_contents_embeddings_store;")
cursor.execute("DROP TABLE IF EXISTS blog;")

conn.close()


def format_array_for_pg(array: list[float]) -> str:
formatted_values = [f"{x:g}" for x in array]

return f"ARRAY[{','.join(formatted_values)}]::vector"


def test_semantic_search(quickstart: None, service_url: str): # noqa: ARG001
conn = psycopg2.connect(service_url)
conn.set_isolation_level(ISOLATION_LEVEL_AUTOCOMMIT)

with conn.cursor() as cursor:
cursor.execute(f"""
SELECT
title,
chunk,
embedding <=> {format_array_for_pg(embeddings["artificial intelligence"])} as distance
FROM blog_contents_embeddings
ORDER BY distance
LIMIT 3;
""")

results = cursor.fetchall()

assert len(results) == 3
assert "Artificial Intelligence" in results[0][0] # First result should be the AI article

cursor.execute(f"""
SELECT
title,
chunk,
embedding <=> {format_array_for_pg(embeddings["database technology"])} as distance
FROM blog_contents_embeddings
ORDER BY distance
LIMIT 3;
""")

results = cursor.fetchall()

# Verify that the PostgreSQL article comes first
assert len(results) == 3
assert "PostgreSQL" in results[0][0]

conn.close()


def test_metadata_filtered_search(quickstart: None, service_url: str): # noqa: ARG001
conn = psycopg2.connect(service_url)
conn.set_isolation_level(ISOLATION_LEVEL_AUTOCOMMIT)

with conn.cursor() as cursor:
cursor.execute(f"""
SELECT
title,
chunk,
metadata->>'read_time' as read_time,
embedding <=> {format_array_for_pg(embeddings["technology"])} as distance
FROM blog_contents_embeddings
WHERE metadata->'tags' ? 'technology'
ORDER BY distance
LIMIT 2;
""")

results = cursor.fetchall()

assert len(results) > 0
titles = [row[0] for row in results]
assert any("Artificial Intelligence" in title for title in titles)
assert any("Cloud Computing" in title for title in titles)

conn.close()


@pytest.fixture(scope="function")
def sync_client(service_url: str) -> client.Sync:
return client.Sync(service_url, "blog_contents_embeddings", 768, metadata_column_name="metadata")


def test_basic_similarity_search(sync_client: client.Sync, quickstart: None): # noqa: ARG001
results = sync_client.search(embeddings["artificial intelligence"], limit=3)

assert len(results) == 3
# Verify the most relevant result is AI-related
assert "AI" in results[0]["metadata"]["tags"]
# Verify basic result structure
assert all(isinstance(r["embedding_uuid"], uuid.UUID) for r in results)
assert all(isinstance(r["chunk"], str) for r in results)
assert all(isinstance(r["metadata"], dict) for r in results)
assert all(isinstance(r["embedding"], numpy.ndarray) for r in results)
assert all(isinstance(r["distance"], float) for r in results)


def test_metadata_filter_search(sync_client: client.Sync, quickstart: None): # noqa: ARG001
results = sync_client.search(
embeddings["technology"],
limit=2,
filter={"read_time": 12}, # matches read_time exactly
)

assert len(results) > 0
assert all(result["metadata"]["read_time"] == 12 for result in results)

results = sync_client.search(
embeddings["technology"],
limit=3,
filter=[{"read_time": 5}, {"read_time": 8}], # matches either read_time
)

assert len(results) == 2
assert all(result["metadata"]["read_time"] in [5, 8] for result in results)

results = sync_client.search(embeddings["technology"], limit=2, filter={"published_date": "2024-04-01"})

assert len(results) > 0
assert all(result["metadata"]["published_date"] == "2024-04-01" for result in results)


def test_predicate_search(sync_client: client.Sync, quickstart: None): # noqa: ARG001
results = sync_client.search(embeddings["technology"], limit=2, predicates=client.Predicates("read_time", ">", 5))

assert len(results) > 0
assert all(float(result["metadata"]["read_time"]) > 5 for result in results)

combined_results = sync_client.search(
embeddings["technology"],
limit=2,
predicates=(client.Predicates("read_time", ">", 5) & client.Predicates("read_time", "<", 15)),
)

assert len(combined_results) > 0
assert all(5 < float(r["metadata"]["read_time"]) < 15 for r in combined_results)


@pytest.mark.skip(
"hard to make work because pgai has a foreign key to the original data which we dont pass in upsert atm"
)
def test_upsert_and_retrieve(sync_client: client.Sync, quickstart: None): # noqa: ARG001
test_id = uuid.uuid1()
test_content = "This is a test article about Python programming."
test_embedding = [0.1] * 768

# Test upsert Todo: ? This breaks right now but users shouldn't have to manually manage embeddings anyways
sync_client.upsert([(test_id, test_content, test_embedding)])
results = sync_client.search(test_embedding, limit=1, filter={"tags": "test"})

assert len(results) == 1
assert results[0]["id"] == test_id
assert results[0]["chunk"] == test_content

sync_client.delete_by_ids([test_id])


def test_delete_operations(sync_client: client.Sync, quickstart: None): # noqa: ARG001
initial_results = sync_client.search(embeddings["database technology"], limit=1, filter={"read_time": 5})
assert len(initial_results) > 0
record_to_delete = initial_results[0]

sync_client.delete_by_ids([record_to_delete["embedding_uuid"]])
results_after_delete = sync_client.search(embeddings["database technology"], limit=1, filter={"read_time": 5})
assert len(results_after_delete) == 0

initial_health_results = sync_client.search(
embeddings["artificial intelligence"], limit=1, filter={"read_time": 12}
)
assert len(initial_health_results) > 0

sync_client.delete_by_metadata({"read_time": 12})
results_after_metadata_delete = sync_client.search(
embeddings["artificial intelligence"], limit=1, filter={"read_time": 12}
)
assert len(results_after_metadata_delete) == 0


@pytest.mark.skip("Makes no sense for the managed vector store?")
def test_index_operations(sync_client: client.Sync, quickstart: None): # noqa: ARG001
sync_client.create_embedding_index(client.DiskAnnIndex())

results = sync_client.search(
embeddings["database technology"], limit=3, query_params=client.DiskAnnIndexParams(rescore=50)
)

assert len(results) == 3
tags = [result["metadata"]["tags"] for result in results]
assert any("database" in t for t in tags)

results_with_params = sync_client.search(
embeddings["database technology"],
limit=3,
query_params=client.DiskAnnIndexParams(rescore=100, search_list_size=20),
)
assert len(results_with_params) == 3

sync_client.drop_embedding_index()


def test_semantic_search_without_metadata(service_url: str, quickstart: None): # noqa: ARG001
conn = psycopg2.connect(service_url)
conn.set_isolation_level(ISOLATION_LEVEL_AUTOCOMMIT)

with conn.cursor() as cursor:
cursor.execute("DROP VIEW IF EXISTS public.blog_contents_embeddings;")
cursor.execute("""
CREATE VIEW public.blog_contents_embeddings AS
SELECT
t.embedding_uuid,
t.chunk_seq,
t.chunk,
t.embedding,
t.id,
s.title,
s.authors,
s.contents
FROM (public.blog_contents_embeddings_store t
LEFT JOIN public.blog s ON ((t.id = s.id)));
""")

sync_client = client.Sync(service_url, "blog_contents_embeddings", 768)
results = sync_client.search(embeddings["artificial intelligence"], limit=3)

assert len(results) == 3
assert all(isinstance(r["embedding_uuid"], uuid.UUID) for r in results)
assert all(isinstance(r["chunk"], str) for r in results)
assert all(isinstance(r["embedding"], numpy.ndarray) for r in results)
assert all(isinstance(r["distance"], float) for r in results)

assert all("metadata" not in r or not r["metadata"] for r in results)

# Restore the original view
with conn.cursor() as cursor:
cursor.execute("DROP VIEW IF EXISTS public.blog_contents_embeddings;")
cursor.execute("""
CREATE VIEW public.blog_contents_embeddings AS
SELECT
t.embedding_uuid,
t.chunk_seq,
t.chunk,
t.embedding,
t.id,
s.title,
s.authors,
s.contents,
s.metadata
FROM (public.blog_contents_embeddings_store t
LEFT JOIN public.blog s ON ((t.id = s.id)));
""")

conn.close()
Loading
Loading