High-performance Krylov subspace and preconditioned iterative solvers for dense and sparse linear systems, with advanced preconditioning strategies and automated parameter optimization.
- Krylov Methods: CG, PCG, GMRES, FGMRES, BiCGStab, CGS, QMR, TFQMR, MINRES, CGNR
- Direct Methods: LU and QR factorization via PREONLY solver type
- Parallel Support: Shared-memory (Rayon) and distributed-memory (MPI) parallelism
- Jacobi: Diagonal scaling preconditioner
- Block Jacobi: Block-wise diagonal preconditioning
- SOR/SSOR: Successive Over-Relaxation methods
- None: No preconditioning (identity)
- ILU(0): Zero fill-in incomplete LU factorization
- ILU(k): Incomplete LU with k levels of fill-in
- ILUT: Threshold-based incomplete LU factorization
- ILUTP: ILUT with partial pivoting
- ILUP: Incomplete LU with partial pivoting
- Chebyshev: Enhanced polynomial preconditioning with eigenvalue estimation
- AMG: Algebraic Multigrid with configurable smoothing parameters
- ASM: Additive Schwarz Method (domain decomposition)
- Approximate Inverse: SPAI-type approximate inverse preconditioners
- PC-Chaining: Sequential application of multiple preconditioners via
pc_chainoption - Enhanced Chebyshev: Matrix-aware polynomial preconditioning with automatic eigenvalue estimation
- Smoothed AMG: Configurable pre- and post-smoothing parameters (
amg_nu_pre,amg_nu_post)
- Iteration Monitoring: Real-time convergence tracking with
IterationMonitor - Parameter Tuning: Automated optimization with
ParameterTunerand grid search - Data Export: CSV output for convergence analysis with
enable_csv_logging() - Performance Metrics: Comprehensive timing and convergence rate analysis
- Real (default): Builds without extra features keep all public APIs monomorphic on
f64. - Complex (
--features complex): Internals promote Kryst's scalar aliasStonum_complex::Complex64while the Matrix Market tooling converts boundary data to and from complex storage.
mpi— enable distributed-memory execution via thempicrate. Optional and independent from Rayon.rayon— turn on shared-memory parallel kernels. Combine with-ksp_threadsto size the worker pool.complex— lift internal kernels toComplex64while keeping the public API monomorphic onf64inputs.logging— route internal tracing to thelogfacade for integration with env_logger or similar backends.
The Krylov drivers expose command-line options to balance global reductions
against additional local work. The most common flags mirror PETSc's -ksp_*
options and can be combined with the deterministic reduction feature for
reproducible CI runs.
| Flag | Default | Effect |
|---|---|---|
| `-ksp_cg_variant classic | pipelined` | classic |
-ksp_reproducible |
false |
Enable deterministic reductions (rank-ordered MPI sums and fixed-order local kernels). |
-ksp_threads <N> |
unset | Request N Rayon workers (requires --features rayon). Ignored in builds without Rayon. |
| `-ksp_gmres_variant classical | pipelined | sstep[:s]` |
-ksp_residual_replacement <iters> |
50 |
Force periodic residual recomputation in pipelined CG to control drift (0 disables). |
-ksp_trust_region <radius> |
unset | Enable CG trust-region safeguarding with the provided radius. |
| `-ksp_reorthog never | ifneeded | always` |
Legacy -ksp_cg_pipelined remains available as an alias for
-ksp_cg_variant pipelined. For bit-for-bit reproducibility, combine
-ksp_reproducible with -ksp_threads 1. When Rayon is enabled with more
than one worker, runs remain deterministic for a fixed thread count but may
differ across thread-count configurations.
When -ksp_reproducible is enabled the solver switches to rank-ordered MPI
reductions and fixed-order local kernels. This guarantees bit-for-bit equality
between runs that use the same communicator size and Rayon thread count. For
strict reproducibility we recommend pinning Rayon to a single thread via
-ksp_threads 1 (or the RAYON_NUM_THREADS environment variable); otherwise,
results remain deterministic for the configured thread count but may differ
between thread-count configurations.
Each solver also records the number of global reductions performed in
SolveStats::counters.num_global_reductions, making it easy to assert expected
latency costs in automated tests.
- PETSc-style API: Unified KSP context for runtime solver selection
- Command-line Options: Complete options database with 50+ parameters
- Trait-based Design: Extensible for custom matrices and preconditioners
- Memory Efficiency: In-place operations and configurable workspace management
- High Performance: Optimized inner kernels with SIMD and parallelization
- Matrix-Free Operators: Shell matrices for callback-based MatVec operations
- Setup Reuse: Two-phase API with preconditioner and workspace recycling
- CSR utilities: zero-copy
row_ptr/col_idx/valuesaccess and sparse kernels (spgemm, CSR Galerkin triple product)
Add to your Cargo.toml:
[dependencies]
kryst = "1.0"[features]
default = [] # Opt in to exactly the features you need
rayon = ["dep:rayon", "dep:num_cpus"]
mpi = ["dep:mpi"]
logging = ["dep:log"]
complex = ["dep:num-complex"]
simd = [] # Auto-tuned std::simd sparse mat-vec kernels
x86_intrinsics = [] # Optional x86_64 gather/prefetch micro-tuningEnabling the simd feature activates the runtime SpMV planner, which selects
between the scalar CSR baseline, a gather-based SIMD kernel, and a SELL-C-σ
kernel. Plans are built once per matrix (e.g., during AMG setup) and cached for
deterministic, allocation-free application time.
use kryst::context::ksp_context::{KspContext, SolverType};
use kryst::context::pc_context::PcType;
use kryst::matrix::op::DenseOp;
use faer::Mat;
use std::sync::Arc;
// Create a 100×100 test system
let n = 100;
let mat = Mat::<f64>::from_fn(n, n, |i, j| {
if i == j { 4.0 } else if (i as i32 - j as i32).abs() == 1 { -1.0 } else { 0.0 }
});
let a = Arc::new(DenseOp::new(Arc::new(mat)));
let rhs = vec![1.0; n];
let mut solution = vec![0.0; n];
// Configure solver and preconditioner
let mut ksp = KspContext::new();
ksp.set_type(SolverType::Gmres)?
.set_pc_type(PcType::Jacobi, None)?
.set_operators(a.clone(), None);
ksp.rtol = 1e-8;
ksp.maxits = 1000;
// Setup once then solve
ksp.setup()?;
let stats = ksp.solve(&rhs, &mut solution)?;
println!(
"Converged in {} iterations with residual {:.2e}",
stats.iterations,
stats.final_residual
);Reuse factorization and workspace across multiple solves by calling setup() once:
let mut ksp = KspContext::new();
ksp.set_type(SolverType::Cg)?
.set_pc_type(PcType::Jacobi, None)?
.set_operators(a.clone(), None);
ksp.setup()?; // perform factorization and allocate workspace
for rhs in rhs_set.iter() {
let mut x = vec![0.0; n];
ksp.solve(rhs, &mut x)?;
}use kryst::context::ksp_context::KspContext;
use kryst::config::options::{KspOptions, PcOptions};
let mut ksp_opts = KspOptions::default();
ksp_opts.ksp_type = Some("cg".into());
let mut pc_opts = PcOptions::default();
pc_opts.pc_chain = Some("jacobi,chebyshev".into());
pc_opts.chebyshev_degree = Some(5);
let mut ksp = KspContext::new();
ksp.set_from_options(&ksp_opts, &pc_opts)?
.set_operators(a.clone(), None);
ksp.setup()?;
let stats = ksp.solve(&rhs, &mut solution)?;use kryst::context::ksp_context::{KspContext, SolverType};
use kryst::context::pc_context::PcType;
use kryst::config::options::PcOptions;
let mut pc_opts = PcOptions::default();
pc_opts.amg_levels = Some(4);
pc_opts.amg_strength_threshold = Some(0.25);
pc_opts.amg_nu_pre = Some(2); // Pre-smoothing steps
pc_opts.amg_nu_post = Some(1); // Post-smoothing steps
let mut ksp = KspContext::new();
ksp.set_type(SolverType::Gmres)?
.set_pc_type(PcType::Amg, Some(&pc_opts))?
.set_operators(a.clone(), None);
ksp.setup()?;
let stats = ksp.solve(&rhs, &mut solution)?;use kryst::{IterationMonitor, ParameterTuner};
use std::time::Duration;
// Monitor convergence behavior
let mut monitor = IterationMonitor::new();
// In practice, integrate monitor with solver iteration callbacks
// Automated parameter tuning
let mut tuner = ParameterTuner::new();
tuner.set_solver_types(vec![SolverType::Cg, SolverType::Gmres]);
tuner.set_pc_types(vec![PcType::Jacobi, PcType::Chebyshev, PcType::Amg]);
tuner.set_tolerances(vec![1e-6, 1e-8]);
tuner.set_max_config_time(Duration::from_secs(30));
let (best_config, all_results) = tuner.tune_parameters(&matrix, &rhs, 5).unwrap();
println!("Best configuration: {:?}", best_config);use kryst::config::options::{parse_all_options, KspOptions, PcOptions};
use kryst::context::ksp_context::KspContext;
// Parse command-line options
let args: Vec<String> = std::env::args().collect();
let (ksp_opts, pc_opts) = parse_all_options(&args)?;
// Configure from options
let mut ksp = KspContext::new();
ksp.set_from_all_options(&ksp_opts, &pc_opts)?
.set_operators(a.clone(), None);
ksp.setup()?;
let stats = ksp.solve(&rhs, &mut solution)?;Run your program with PETSc-style options:
# Basic solver configuration
./my_program -ksp_type gmres -ksp_rtol 1e-8 -pc_type jacobi
# Direct solvers
./my_program -ksp_type preonly -pc_type lu # Direct LU solver
./my_program -ksp_type preonly -pc_type qr # Direct QR solver
# Advanced preconditioning
./my_program -ksp_type cg -pc_type amg -amg_nu_pre 2 -amg_nu_post 1
./my_program -ksp_type gmres -pc_chain "jacobi,chebyshev" -chebyshev_degree 5
# Show all available options
./my_program -help-ksp_type <solver>- Solver type:cg,pcg,gmres,fgmres,bicgstab,cgs,qmr,tfqmr,minres,cgnr,preonly-ksp_rtol <float>- Relative convergence tolerance (default: 1e-5)-ksp_atol <float>- Absolute convergence tolerance (default: 1e-50)-ksp_dtol <float>- Divergence tolerance (default: 1e5)-ksp_max_it <int>- Maximum number of iterations (default: 10000)-ksp_gmres_restart <int>- GMRES restart parameter (default: 50)-ksp_pc_side <side>- Preconditioning side:left,right,symmetric-ksp_reproducible- Enable deterministic reductions; forces rank-ordered MPI sums and stable intra-rank chunking.
-pc_type <pc>- Preconditioner type:jacobi,blockjacobi,sor,none
-pc_type <pc>- ILU variants:ilu0,ilu,ilut,ilutp,ilup-pc_ilu_levels <int>- ILU fill levels (default: 0)-pc_ilut_drop_tol <float>- ILUT drop tolerance (default: 1e-3)-pc_ilut_max_fill <int>- ILUT maximum fill per row (default: 10)
-pc_type chebyshev- Enhanced Chebyshev with eigenvalue estimation-chebyshev_degree <int>- Polynomial degree (default: 3)-pc_type amg- Algebraic multigrid with smoothing control-amg_levels <int>- Number of AMG levels (default: 4)-amg_strength_threshold <float>- Strong connection threshold (default: 0.25)-amg_nu_pre <int>- Pre-smoothing steps (default: 1)-amg_nu_post <int>- Post-smoothing steps (default: 1)
-pc_chain <string>- Sequential preconditioner chain (e.g., "jacobi,chebyshev")-pc_type asm- Additive Schwarz Method-pc_type approxinv- Approximate inverse preconditioner
-pc_type lu- Direct LU factorization via SuperLU-pc_type qr- Direct QR factorization
-asm_overlap <int>- ASM subdomain overlap (default: 1)-asm_type <type>- ASM variant:restrict,interpolate,basic
# Enhanced Chebyshev preconditioning
-ksp_type cg -pc_type chebyshev -chebyshev_degree 6
# AMG with custom smoothing
-ksp_type gmres -pc_type amg -amg_nu_pre 2 -amg_nu_post 1
# Composite preconditioning (PC-chaining)
-ksp_type cg -pc_chain "jacobi,chebyshev" -chebyshev_degree 4
# High-accuracy direct solve
-ksp_type preonly -pc_type lu
# BiCGStab with threshold ILU
-ksp_type bicgstab -pc_type ilut -pc_ilut_drop_tol 1e-4
# GMRES with additive Schwarz
-ksp_type gmres -pc_type asm -asm_overlap 2Track solver convergence with real-time monitoring:
use kryst::utils::monitor::IterationMonitor;
use kryst::context::ksp_context::{KspContext, SolverType};
use kryst::context::pc_context::PcType;
use std::sync::{Arc, Mutex};
use std::time::Duration;
// Create and configure monitor
let mut monitor = IterationMonitor::new();
monitor.enable_csv_logging("convergence_history.csv").unwrap();
// Configure solver with monitoring callback
let monitor_ref = Arc::new(Mutex::new(monitor));
let monitor_clone = Arc::clone(&monitor_ref);
let mut ksp = KspContext::new();
ksp.set_type(SolverType::Gmres)?
.set_pc_type(PcType::Jacobi, None)?
.set_operators(a.clone(), None);
// Add monitoring callback
ksp.add_monitor(move |iter, residual| {
if let Ok(mut mon) = monitor_clone.lock() {
mon.record_iteration(iter, residual, None);
}
});
// Solve with monitoring
ksp.setup()?;
let stats = ksp.solve(&rhs, &mut solution)?;
// Analyze convergence
if let Ok(mon) = monitor_ref.lock() {
let convergence_stats = mon.get_statistics();
println!("Total iterations: {}", convergence_stats.total_iterations);
println!("Average convergence rate: {:.4}", convergence_stats.avg_convergence_rate);
println!("Final residual: {:.2e}", convergence_stats.final_residual);
// Check for convergence issues
if mon.recent_convergence_rate(5).unwrap_or(1.0) > 0.9 {
println!("Warning: Slow convergence detected");
}
}Optimize solver/preconditioner combinations automatically:
use kryst::utils::tuning::{ParameterTuner, ParameterConfig};
use kryst::context::ksp_context::SolverType;
use kryst::context::pc_context::PcType;
use std::time::Duration;
let mut tuner = ParameterTuner::new();
// Configure search space
tuner.set_solver_types(vec![SolverType::Cg, SolverType::Gmres, SolverType::BiCgStab])
.set_pc_types(vec![PcType::Jacobi, PcType::Chebyshev, PcType::Amg])
.set_tolerances(vec![1e-6, 1e-8, 1e-10])
.set_max_config_time(Duration::from_secs(60));
// Add PC-chain configurations for composite preconditioning
tuner.add_pc_chains(vec![
"jacobi,chebyshev".to_string(),
"jacobi,ilu0".to_string(),
]);
// Run automated tuning
let (best_config, all_results) = tuner.tune_parameters(&matrix, &rhs, 10).unwrap();
println!("Best configuration found:");
println!(" Solver: {:?}", best_config.solver_type);
println!(" Preconditioner: {:?}", best_config.pc_type);
println!(" Tolerance: {:.2e}", best_config.rtol);
if let Some(chain) = &best_config.pc_chain {
println!(" PC Chain: {}", chain);
}
println!(" Converged: {}", all_results.iter().find(|r| r.config.solver_type == best_config.solver_type).unwrap().converged);
// Export results for further analysis
tuner.export_results("tuning_results.txt").unwrap();
let summary = tuner.get_summary();
println!("Success rate: {:.1}%", summary.get("convergence_rate").unwrap_or(&0.0) * 100.0);use kryst::utils::monitor::IterationMonitor;
use std::time::Duration;
let mut monitor = IterationMonitor::new();
monitor.start_solve();
// Record some iterations
monitor.record_iteration(0, 1.0, None);
monitor.record_iteration(1, 0.5, Some(Duration::from_millis(10)));
monitor.record_iteration(2, 0.25, Some(Duration::from_millis(12)));
// Mark convergence
monitor.mark_converged("Relative tolerance achieved");
// Get detailed statistics
let stats = monitor.get_statistics();
println!("Convergence statistics:");
println!(" Total iterations: {}", stats.total_iterations);
println!(" Average convergence rate: {:.4}", stats.avg_convergence_rate);
println!(" Best convergence rate: {:.4}", stats.best_convergence_rate);
println!(" Average iteration time: {:.3}ms", stats.avg_iteration_time.as_secs_f64() * 1000.0);
// Check recent convergence behavior
if let Some(recent_rate) = monitor.recent_convergence_rate(3) {
println!("Recent convergence rate (last 3 iterations): {:.4}", recent_rate);
}
// Set up real-time monitoring callbacks
let mut ksp = KspContext::new();
ksp.add_monitor(|iter, residual| {
println!("Iteration {}: residual = {:.3e}", iter, residual);
// Custom monitoring logic
if iter > 0 && iter % 10 == 0 {
println!(" Checkpoint: {} iterations completed", iter);
}
});Enable detailed timing and performance information:
[dependencies]
kryst = { version = "1.0", features = ["logging"] }Run with environment variables for detailed profiling:
# Trace-level logging shows detailed stage timing
RUST_LOG=trace cargo run --features=logging
# Debug-level shows major operations
RUST_LOG=debug cargo run --features=logging
# Info-level shows high-level progress
RUST_LOG=info cargo run --features=loggingProfiling output includes:
- KSPSetup: Preconditioner setup and workspace allocation timing
- KSPSolve: Complete solve time breakdown
- PCSetup: Individual preconditioner setup timing
- WorkspaceAllocation: Memory allocation timing
- MatVec: Matrix-vector product timing
- PCApply: Preconditioner application timing
- CG: Conjugate Gradient for symmetric positive definite systems
- PCG: Preconditioned Conjugate Gradient
- GMRES: Generalized Minimal Residual with restart
- FGMRES: Flexible GMRES for variable preconditioning
- BiCGStab: BiConjugate Gradient Stabilized for nonsymmetric systems
- CGS: Conjugate Gradient Squared
- QMR: Quasi-Minimal Residual method
- TFQMR: Transpose-Free QMR
- MINRES: Minimal Residual for symmetric indefinite systems
- CGNR: Conjugate Gradient on the Normal Equations
- PREONLY: Single-step direct solve using LU or QR factorization
- Supports both
-pc_type luand-pc_type qr - Ideal for well-conditioned systems where direct methods are preferred
- Jacobi: Diagonal scaling
M⁻¹ = diag(A)⁻¹ - Block Jacobi: Block-wise diagonal preconditioning with configurable block sizes
- SOR/SSOR: Successive Over-Relaxation with configurable relaxation parameter
- None: Identity preconditioning (no preconditioning)
- ILU(0): Zero fill-in incomplete LU factorization
- ILU(k): Incomplete LU with k levels of fill-in
- ILUT: ILU with threshold-based dropping strategy
- ILUTP: ILUT with partial pivoting for numerical stability
- ILUP: Incomplete LU with partial pivoting
Enhanced polynomial preconditioning implementation based on eigenvalue estimation:
use kryst::preconditioner::chebyshev::Chebyshev;
use kryst::config::options::PcOptions;
use kryst::context::pc_context::PcType;
// Enhanced Chebyshev with automatic eigenvalue estimation
let mut pc_opts = PcOptions::default();
pc_opts.chebyshev_degree = Some(6); // Higher degree for better approximation
ksp.set_pc_type(PcType::Chebyshev, Some(&pc_opts))?;Features:
- Matrix-aware: Automatic eigenvalue bound estimation using power iteration
- Configurable Degree: Polynomial degree optimization (default: 3, range: 1-20)
- Storage Efficient: Reuses matrix storage for eigenvalue computation
- Robust: Handles near-singular matrices with adaptive bounds
Advanced Algebraic Multigrid with configurable smoothing:
use kryst::preconditioner::amg::Amg;
use kryst::config::options::PcOptions;
use kryst::context::pc_context::PcType;
// Enhanced AMG with smoothing control
let mut pc_opts = PcOptions::default();
pc_opts.amg_levels = Some(5); // Multigrid levels
pc_opts.amg_strength_threshold = Some(0.5); // Strong connection threshold
pc_opts.amg_nu_pre = Some(2); // Pre-smoothing steps
pc_opts.amg_nu_post = Some(1); // Post-smoothing steps
ksp.set_pc_type(PcType::Amg, Some(&pc_opts))?;Features:
- Smoothed Multigrid: Configurable pre- and post-smoothing parameters
- Adaptive Coarsening: Automatic grid hierarchy construction based on strength
- Strength Threshold: Customizable strong connection criteria (default: 0.25)
- Flexible Smoothing: Separate control of pre/post smoothing iterations
PC-chaining allows sequential application of multiple preconditioners:
use kryst::config::options::{KspOptions, PcOptions};
// Example 1: Jacobi + Chebyshev combination
let mut pc_opts = PcOptions::default();
pc_opts.pc_chain = Some("jacobi,chebyshev".to_string());
pc_opts.chebyshev_degree = Some(4);
ksp.set_from_options(&KspOptions::default(), &pc_opts)?;
// Example 2: Multi-stage preconditioning
let mut pc_opts = PcOptions::default();
pc_opts.pc_chain = Some("jacobi,ilu0,chebyshev".to_string());
ksp.set_from_options(&KspOptions::default(), &pc_opts)?;
// Example 3: Domain decomposition + multigrid
let mut pc_opts = PcOptions::default();
pc_opts.pc_chain = Some("asm,amg".to_string());
pc_opts.amg_nu_pre = Some(1);
ksp.set_from_options(&KspOptions::default(), &pc_opts)?;Features:
- Flexible Combinations: Mix any preconditioner types in sequence
- Automatic Setup: Transparent handling of composite preconditioner construction
- Parameter Inheritance: Specialized parameters apply to respective stages
- Performance Tuning: Optimize combinations via
ParameterTuner
- ASM: Additive Schwarz Method with configurable overlap
- Approximate Inverse: SPAI-type sparse approximate inverse
- Shared Memory: Rayon-based parallel execution for matrix operations and preconditioner application
- Distributed Memory: MPI support for distributed linear algebra operations (via mpi feature)
- SIMD Optimization: Leverages hardware acceleration through optimized inner kernels via faer
- Parallel Preconditioners: Thread-safe preconditioner application with work stealing
- In-place Operations: Minimizes memory allocations during iteration
- Workspace Reuse: Preallocated workspace vectors for Krylov methods
- Block Operations: Efficient cache usage through blocked algorithms
- Sparse Patterns: Memory-efficient storage for sparse matrices and preconditioners
- Eigenvalue Estimation: Fast power iteration for Chebyshev eigenvalue bounds
- Adaptive Restart: GMRES restart optimization based on convergence behavior
- Early Termination: Configurable stopping criteria with multiple tolerance options
- Matrix Preprocessing: Reordering and scaling for improved conditioning
- Full support via
faer::Mat<T>integration - Optimized BLAS-level operations
- Support for f32, f64 precision
- Efficient dense matrix-vector products
- Custom CSR format implementation
- Efficient sparse matrix-vector products
- Pattern-based optimization for preconditioners
- Memory-efficient storage with configurable sparsity patterns
- Trait-based
MatVecinterface for custom matrix implementations - Support for implicit matrix representations
- Easy integration of matrix-free operators
- Efficient for PDE discretizations and other structured problems
The library includes comprehensive demonstration programs:
# Options and CLI interface demonstration
cargo run --example options_demo -- -ksp_type gmres -pc_type jacobi -ksp_rtol 1e-8
# Direct solver usage
cargo run --example dense_direct
# Matrix market file demonstration
cargo run --example matrix_market_demo# Convergence behavior analysis
cargo run --example convergence_demo
# Iteration monitoring demonstration
cargo run --example monitor -- --features=logging
# HYPRE-style ILU demonstration
cargo run --example hypre_ilu_demo
# MPI parallel examples (requires MPI)
mpirun -n 4 cargo run --example mpi_parallel_demo --features mpiNote: Matrix Market example files (*.mtx) are excluded from the published crate to stay within size limits. The matrix_market_demo example will auto-generate test data if example files are not found.
# Enhanced Chebyshev preconditioning
cargo run --example options_demo -- -ksp_type cg -pc_type chebyshev -chebyshev_degree 6
# AMG with custom smoothing parameters
cargo run --example options_demo -- -ksp_type gmres -pc_type amg -amg_nu_pre 3 -amg_nu_post 2
# Composite preconditioning with PC-chaining
cargo run --example options_demo -- -ksp_type cg -pc_chain "jacobi,chebyshev" -chebyshev_degree 4
# High-precision direct solve
cargo run --example options_demo -- -ksp_type preonly -pc_type lu
# Complex preconditioner combinations
cargo run --example options_demo -- -ksp_type fgmres -pc_type ilut -pc_ilut_drop_tol 1e-5Performance benchmarks are available via:
cargo benchBenchmark categories include:
- Solver Comparison: GMRES vs BiCGStab vs CG performance on various problems
- Preconditioner Effectiveness: Impact of different preconditioners on convergence
- Direct vs Iterative: Performance comparison for different problem sizes
- Parallel Scaling: Shared-memory (Rayon) and distributed-memory (MPI) performance
- Phase III Features: PC-chaining and enhanced preconditioning performance
- Memory Usage: Workspace allocation and memory efficiency analysis
Sample benchmark results (varies by system and problem):
solver_comparison/gmres time: 45.2 ms (convergence: 23 iterations)
solver_comparison/bicgstab time: 38.7 ms (convergence: 31 iterations)
solver_comparison/cg time: 22.1 ms (convergence: 18 iterations)
pc_effectiveness/jacobi time: 156 ms (convergence: 89 iterations)
pc_effectiveness/amg time: 67.3 ms (convergence: 12 iterations)
pc_chaining/jacobi+cheby time: 43.8 ms (convergence: 15 iterations)
use kryst::{LinearSolver, MatVec, Preconditioner, SolveStats, KError};
struct MyCustomSolver {
tolerance: f64,
max_iterations: usize,
}
impl<M, V> LinearSolver<M, V> for MyCustomSolver
where
M: MatVec<V>,
V: Clone,
{
fn solve(
&mut self,
matrix: &M,
preconditioner: Option<&dyn Preconditioner<M, V>>,
rhs: &V,
solution: &mut V
) -> Result<SolveStats, KError> {
// Custom solver implementation
// Return solve statistics
Ok(SolveStats {
iterations: 0,
residual_norm: 0.0,
converged: true,
})
}
}use kryst::{Preconditioner, PcSide, KError};
struct MyCustomPreconditioner {
// Preconditioner data structures
factorization: Option<Vec<f64>>,
}
impl<M, V> Preconditioner<M, V> for MyCustomPreconditioner {
fn setup(&mut self, matrix: &M) -> Result<(), KError> {
// Preconditioner setup/factorization phase
// Store factorization data
Ok(())
}
fn apply(&self, side: PcSide, x: &V, y: &mut V) -> Result<(), KError> {
// Apply M⁻¹x → y (or x M⁻¹ → y for right preconditioning)
match side {
PcSide::Left => {
// Left preconditioning: solve Mz = x, return z in y
},
PcSide::Right => {
// Right preconditioning: solve zM = x, return z in y
},
}
Ok(())
}
}use kryst::core::traits::MatVec;
use kryst::error::KError;
struct LaplacianOperator {
n: usize, // Grid size
h: f64, // Grid spacing
}
impl MatVec<Vec<f64>> for LaplacianOperator {
fn matvec(&self, x: &Vec<f64>, y: &mut Vec<f64>) -> Result<(), KError> {
// Implement matrix-vector product y = Ax
// For 1D Laplacian: -u''(x) ≈ -(u[i+1] - 2u[i] + u[i-1])/h²
for i in 0..self.n {
if i == 0 || i == self.n - 1 {
y[i] = x[i]; // Boundary conditions
} else {
y[i] = (-x[i-1] + 2.0*x[i] - x[i+1]) / (self.h * self.h);
}
}
Ok(())
}
fn size(&self) -> (usize, usize) {
(self.n, self.n)
}
}
// Usage with KspContext
use std::sync::Arc;
let laplacian = Arc::new(LaplacianOperator { n: 1000, h: 0.001 });
let mut ksp = KspContext::new();
ksp.set_type(SolverType::Cg)?
.set_pc_type(PcType::Jacobi, None)?
.set_operators(laplacian.clone(), None);
// Can use matrix-free operator directly
let rhs = vec![1.0; laplacian.n];
let mut sol = vec![0.0; laplacian.n];
ksp.setup()?;
let stats = ksp.solve(&rhs, &mut sol)?;- API Documentation - Complete API reference with examples
- Repository - Source code, issues, and discussions
- Examples Directory - Comprehensive demonstration programs
- Benchmarks - Performance comparison suite
- Phase III/IV Summary - Advanced preconditioning and automation features
- Saad, Y. (2003). Iterative Methods for Sparse Linear Systems, 2nd Edition. SIAM.
- Barrett, R. et al. (1994). Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM.
- Trefethen, L.N. & Bau, D. (1997). Numerical Linear Algebra. SIAM.
- Briggs, W.L., Henson, V.E. & McCormick, S.F. (2000). A Multigrid Tutorial, 2nd Edition. SIAM.
- PETSc Documentation: https://petsc.org/release/documentation/
- Trilinos Documentation: https://trilinos.github.io/
Run the comprehensive test suite:
# All tests
cargo test
# Specific test categories
cargo test --lib solver
cargo test --lib preconditioner
cargo test --lib context
cargo test --lib utils
# Integration tests
cargo test test_phase_iii_iv_integration
cargo test test_options_integration
cargo test test_preconditioner_integration
# With specific features
cargo test --features "rayon"
cargo test --features "mpi"
cargo test --features "logging"
# Performance testing
cargo test --release- Unit Tests: 200+ individual component tests across solvers, preconditioners, and utilities
- Integration Tests: End-to-end validation including monitor integration and parameter tuning
- Options Tests: CLI parsing and configuration validation
- Feature Tests: Advanced functionality validation (PC-chaining, monitoring, tuning)
- Performance Tests: Benchmark validation and regression testing
New Features:
- Enhanced Chebyshev preconditioner with eigenvalue estimation
- AMG with configurable pre/post smoothing parameters
- PC-chaining for composite preconditioning
- Iteration monitoring and automated parameter tuning
- Expanded CLI options (50+ parameters)
Breaking Changes:
- None! Version 1.0 maintains full backward compatibility
Recommended Upgrades:
// Old approach
ksp.set_pc_type(PcType::Chebyshev, None)?;
// Enhanced approach (optional)
let mut pc_opts = PcOptions::default();
pc_opts.chebyshev_degree = Some(6);
ksp.set_pc_type(PcType::Chebyshev, Some(&pc_opts))?;New Monitoring Capabilities:
// Add iteration monitoring
use kryst::utils::monitor::IterationMonitor;
let mut monitor = IterationMonitor::new();
ksp.add_monitor(|iter, residual| {
println!("Iteration {}: {:.2e}", iter, residual);
});
// Add automated parameter tuning
use kryst::utils::tuning::ParameterTuner;
let mut tuner = ParameterTuner::new();
let (best_config, _) = tuner.tune_parameters(&matrix, &rhs, 5).unwrap();This project is licensed under the MIT License - see the LICENSE file for details.
Contributions are welcome! Please feel free to submit a Pull Request. For major changes, please open an issue first to discuss what you would like to change.
-
Clone the repository:
git clone https://github.com/tmathis720/kryst.git cd kryst -
Install Rust (stable toolchain recommended):
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
-
Optional: Install MPI for distributed features:
# Ubuntu/Debian sudo apt-get install libopenmpi-dev # macOS brew install open-mpi
-
Run tests and benchmarks:
cargo test cargo bench cargo test --features "mpi" # If MPI is available
- GPU Acceleration: CUDA/OpenCL backends for matrix operations
- Additional Solvers: LOBPCG, IDR(s), BiCGStab(l) variants
- Matrix Formats: Coordinate (COO), block sparse (BSR) formats
- Performance: SIMD optimizations, better cache utilization
- Multigrid Variants: Classical AMG, smoothed aggregation
- Eigenvalue Solvers: Integration with Krylov eigenvalue methods
- Nonlinear Solvers: Newton-Krylov, JFNK methods
- Adaptive Methods: Adaptive restart, dynamic tolerance adjustment
- Complex Arithmetic: Complex-valued linear systems support
- Mixed Precision: fp16/fp32/fp64 combinations for accuracy/performance tradeoffs
- Advanced I/O: HDF5, NetCDF matrix I/O support
- Visualization: Integration with plotting libraries for convergence analysis
- Follow Rust standard formatting:
cargo fmt - Ensure clippy compliance:
cargo clippy - Add comprehensive tests for new features
- Include benchmark tests for performance-critical code
- Document public APIs with examples
- Follow semantic versioning for releases
- Fork the repository
- Create a feature branch:
git checkout -b feature/amazing-feature - Make your changes and add tests
- Ensure all tests pass:
cargo test - Run formatting and linting:
cargo fmt && cargo clippy - Commit your changes:
git commit -m 'Add amazing feature' - Push to the branch:
git push origin feature/amazing-feature - Open a Pull Request with a clear description
kryst provides a comprehensive, high-performance linear algebra toolkit for the Rust ecosystem, with particular focus on iterative methods for large-scale scientific computing applications. The library combines the mathematical rigor of established numerical libraries like PETSc with the safety and performance characteristics of Rust, making it ideal for research, scientific computing, and production applications requiring robust linear system solvers.